SNAP Library , User Reference
2013-01-07 14:03:36
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
00001 namespace TSnap { 00002 00004 // Node centrality measures (See: http://en.wikipedia.org/wiki/Centrality) 00005 00008 double GetDegreeCentr(const PUNGraph& Graph, const int& NId); 00011 double GetFarnessCentr(const PUNGraph& Graph, const int& NId); 00014 double GetClosenessCentr(const PUNGraph& Graph, const int& NId); 00017 template <class PGraph> int GetNodeEcc(const PGraph& Graph, const int& NId, const bool& IsDir=false); 00018 00022 void GetBetweennessCentr(const PUNGraph& Graph, TIntFltH& NIdBtwH, const double& NodeFrac=1.0); 00026 void GetBetweennessCentr(const PUNGraph& Graph, TIntPrFltH& EdgeBtwH, const double& NodeFrac=1.0); 00031 void GetBetweennessCentr(const PUNGraph& Graph, TIntFltH& NIdBtwH, TIntPrFltH& EdgeBtwH, const double& NodeFrac=1.0); 00037 void GetBetweennessCentr(const PUNGraph& Graph, const TIntV& BtwNIdV, TIntFltH& NodeBtwH, const bool& DoNodeCent, TIntPrFltH& EdgeBtwH, const bool& DoEdgeCent); 00038 00041 void GetEigenVectorCentr(const PUNGraph& Graph, TIntFltH& NIdEigenH, const double& Eps=1e-4, const int& MaxIter=100); 00042 00045 template<class PGraph> void GetPageRank(const PGraph& Graph, TIntFltH& PRankH, const double& C=0.85, const double& Eps=1e-4, const int& MaxIter=100); 00048 template<class PGraph> void GetHits(const PGraph& Graph, TIntFltH& NIdHubH, TIntFltH& NIdAuthH, const int& MaxIter=20); 00049 00051 // Implementation 00052 template <class PGraph> 00053 int GetNodeEcc(const PGraph& Graph, const int& NId, const bool& IsDir) { 00054 int NodeEcc; 00055 int Dist; 00056 TBreathFS<PGraph> BFS(Graph); 00057 // get shortest paths to all the nodes 00058 BFS.DoBfs(NId, true, ! IsDir, -1, TInt::Mx); 00059 00060 NodeEcc = 0; 00061 // find the largest value 00062 for (int i = 0; i < BFS.NIdDistH.Len(); i++) { 00063 Dist = BFS.NIdDistH[i]; 00064 if (Dist > NodeEcc) { 00065 NodeEcc = Dist; 00066 } 00067 } 00068 return NodeEcc; 00069 } 00070 00071 // Page Rank -- there are two different implementations (uncomment the desired 2 lines): 00072 // Berkhin -- (the correct way) see Algorithm 1 of P. Berkhin, A Survey on PageRank Computing, Internet Mathematics, 2005 00073 // iGraph -- iGraph implementation(which treats leaked PageRank in a funny way) 00074 template<class PGraph> 00075 void GetPageRank(const PGraph& Graph, TIntFltH& PRankH, const double& C, const double& Eps, const int& MaxIter) { 00076 const int NNodes = Graph->GetNodes(); 00077 //const double OneOver = 1.0/double(NNodes); 00078 PRankH.Gen(NNodes); 00079 for (typename PGraph::TObj::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) { 00080 PRankH.AddDat(NI.GetId(), 1.0/NNodes); 00081 //IAssert(NI.GetId() == PRankH.GetKey(PRankH.Len()-1)); 00082 } 00083 TFltV TmpV(NNodes); 00084 for (int iter = 0; iter < MaxIter; iter++) { 00085 int j = 0; 00086 for (typename PGraph::TObj::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++, j++) { 00087 TmpV[j] = 0; 00088 for (int e = 0; e < NI.GetInDeg(); e++) { 00089 const int InNId = NI.GetInNId(e); 00090 const int OutDeg = Graph->GetNI(InNId).GetOutDeg(); 00091 if (OutDeg > 0) { 00092 TmpV[j] += PRankH.GetDat(InNId) / OutDeg; } 00093 } 00094 TmpV[j] = C*TmpV[j]; // Berkhin (the correct way of doing it) 00095 //TmpV[j] = C*TmpV[j] + (1.0-C)*OneOver; // iGraph 00096 } 00097 double diff=0, sum=0, NewVal; 00098 for (int i = 0; i < TmpV.Len(); i++) { sum += TmpV[i]; } 00099 const double Leaked = (1.0-sum) / double(NNodes); 00100 for (int i = 0; i < PRankH.Len(); i++) { // re-instert leaked PageRank 00101 NewVal = TmpV[i] + Leaked; // Berkhin 00102 //NewVal = TmpV[i] / sum; // iGraph 00103 diff += fabs(NewVal-PRankH[i]); 00104 PRankH[i] = NewVal; 00105 } 00106 if (diff < Eps) { break; } 00107 } 00108 } 00109 00110 template<class PGraph> 00111 void GetHits(const PGraph& Graph, TIntFltH& NIdHubH, TIntFltH& NIdAuthH, const int& MaxIter) { 00112 const int NNodes = Graph->GetNodes(); 00113 NIdHubH.Gen(NNodes); 00114 NIdAuthH.Gen(NNodes); 00115 for (typename PGraph::TObj::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) { 00116 NIdHubH.AddDat(NI.GetId(), 1.0); 00117 NIdAuthH.AddDat(NI.GetId(), 1.0); 00118 } 00119 double Norm=0; 00120 for (int iter = 0; iter < MaxIter; iter++) { 00121 // update authority scores 00122 Norm = 0; 00123 for (typename PGraph::TObj::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) { 00124 double& Auth = NIdAuthH.GetDat(NI.GetId()).Val; 00125 Auth = 0; 00126 for (int e = 0; e < NI.GetInDeg(); e++) { 00127 Auth += NIdHubH.GetDat(NI.GetInNId(e)); } 00128 Norm += Auth*Auth; 00129 } 00130 Norm = sqrt(Norm); 00131 for (int i = 0; i < NIdAuthH.Len(); i++) { NIdAuthH[i] /= Norm; } 00132 // update hub scores 00133 for (typename PGraph::TObj::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) { 00134 double& Hub = NIdHubH.GetDat(NI.GetId()).Val; 00135 Hub = 0; 00136 for (int e = 0; e < NI.GetOutDeg(); e++) { 00137 Hub += NIdAuthH.GetDat(NI.GetOutNId(e)); } 00138 Norm += Hub*Hub; 00139 } 00140 Norm = sqrt(Norm); 00141 for (int i = 0; i < NIdHubH.Len(); i++) { NIdHubH[i] /= Norm; } 00142 } 00143 } 00144 00145 }; // namespace TSnap