SNAP Library 2.1, Developer Reference  2013-09-25 10:47:25
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
xmath.cpp
Go to the documentation of this file.
00001 
00002 // Mathematical-Utilities
00003 double TMath::E=2.71828182845904523536;
00004 double TMath::Pi=3.14159265358979323846;
00005 double TMath::LogOf2=log(double(2));
00006 
00008 // Special-Functions
00009 void TSpecFunc::GammaPSeries/*gser*/(
00010  double& gamser, const double& a, const double& x, double& gln){
00011   static const int ITMAX=100;
00012   static const double EPS=3.0e-7;
00013   int n;
00014   double sum, del, ap;
00015 
00016   gln=LnGamma(a);
00017   if (x <= 0.0){
00018     IAssert(x>=0); /*if (x < 0.0) nrerror("x less than 0 in routine gser");*/
00019     gamser=0.0;
00020     return;
00021   } else {
00022     ap=a;
00023     del=sum=1.0/a;
00024     for (n=1; n<=ITMAX; n++){
00025       ++ap;
00026       del *= x/ap;
00027       sum += del;
00028       if (fabs(del) < fabs(sum)*EPS){
00029         gamser=sum*exp(-x+a*log(x)-(gln));
00030         return;
00031       }
00032     }
00033     Fail; /*nrerror("a too large, ITMAX too small in routine gser");*/
00034     return;
00035   }
00036 }
00037 
00038 void TSpecFunc::GammaQContFrac/*gcf*/(
00039  double& gammcf, const double& a, const double& x, double& gln){
00040   static const int ITMAX=100;
00041   static const double EPS=3.0e-7;
00042   static const double  FPMIN=1.0e-30;
00043   int i;
00044   double an, b, c, d, del, h;
00045 
00046   gln=LnGamma(a);
00047   b=x+1.0-a;
00048   c=1.0/FPMIN;
00049   d=1.0/b;
00050   h=d;
00051   for (i=1;i<=ITMAX;i++){
00052     an = -i*(i-a);
00053     b += 2.0;
00054     d=an*d+b;
00055     if (fabs(d) < FPMIN) d=FPMIN;
00056     c=b+an/c;
00057     if (fabs(c) < FPMIN) c=FPMIN;
00058     d=1.0/d;
00059     del=d*c;
00060     h *= del;
00061     if (fabs(del-1.0) < EPS) break;
00062   }
00063   IAssert(i<=ITMAX);
00064   /*if (i > ITMAX) nrerror("a too large, ITMAX too small in gcf");*/
00065   gammcf=exp(-x+a*log(x)-(gln))*h;
00066 }
00067 
00068 double TSpecFunc::GammaQ/*gammq*/(const double& a, const double& x){
00069   IAssert((x>=0)&&(a>0));
00070   double gamser, gammcf, gln;
00071   if (x<(a+1.0)){
00072     GammaPSeries(gamser,a,x,gln);
00073     return 1.0-gamser;
00074   } else {
00075     GammaQContFrac(gammcf,a,x,gln);
00076     return gammcf;
00077   }
00078 }
00079 
00080 double TSpecFunc::LnGamma/*gammln*/(const double& xx){
00081   double x, y, tmp, ser;
00082   static double cof[6]={76.18009172947146,-86.50532032941677,
00083           24.01409824083091,-1.231739572450155,
00084           0.1208650973866179e-2,-0.5395239384953e-5};
00085   int j;
00086 
00087   y=x=xx;
00088   tmp=x+5.5;
00089   tmp -= (x+0.5)*log(tmp);
00090   ser=1.000000000190015;
00091   for (j=0;j<=5;j++) ser += cof[j]/++y;
00092   return -tmp+log(2.5066282746310005*ser/x);
00093 }
00094 
00095 double TSpecFunc::LnComb(const int& n, const int& k){
00096   return LnGamma(n+1)-LnGamma(k+1)-LnGamma(n-k+1);
00097 }
00098 
00099 double TSpecFunc::BetaCf(const double& a, const double& b, const double& x){
00100   static const double MAXIT=100;
00101   static const double EPS=3.0e-7;
00102   static const double FPMIN=1.0e-30;
00103   int m,m2;
00104   double aa,c,d,del,h,qab,qam,qap;
00105 
00106   qab=a+b;
00107   qap=a+1.0;
00108   qam=a-1.0;
00109   c=1.0;
00110   d=1.0-qab*x/qap;
00111   if (fabs(d) < FPMIN) d=FPMIN;
00112   d=1.0/d;
00113   h=d;
00114   for (m=1;m<=MAXIT;m++) {
00115     m2=2*m;
00116     aa=m*(b-m)*x/((qam+m2)*(a+m2));
00117     d=1.0+aa*d;
00118     if (fabs(d) < FPMIN) d=FPMIN;
00119     c=1.0+aa/c;
00120     if (fabs(c) < FPMIN) c=FPMIN;
00121     d=1.0/d;
00122     h *= d*c;
00123     aa = -(a+m)*(qab+m)*x/((a+m2)*(qap+m2));
00124     d=1.0+aa*d;
00125     if (fabs(d) < FPMIN) d=FPMIN;
00126     c=1.0+aa/c;
00127     if (fabs(c) < FPMIN) c=FPMIN;
00128     d=1.0/d;
00129     del=d*c;
00130     h *= del;
00131     if (fabs(del-1.0) < EPS) break;
00132   }
00133   if (m > MAXIT){Fail;}// a or b too big, or MAXIT too small in betacf
00134   return h;
00135 }
00136 
00137 double TSpecFunc::BetaI(const double& a, const double& b, const double& x){
00138   double bt;
00139 
00140   if (x < 0.0 || x > 1.0){Fail;} // Bad x in routine betai
00141   if (x == 0.0 || x == 1.0) bt=0.0;
00142   else
00143     bt=exp(LnGamma(a+b)-LnGamma(a)-LnGamma(b)+a*log(x)+b*log(1.0-x));
00144   if (x < (a+1.0)/(a+b+2.0))
00145     return bt*BetaCf(a,b,x)/a;
00146   else
00147     return 1.0-bt*BetaCf(b,a,1.0-x)/b;
00148 }
00149 
00150 void TSpecFunc::LinearFit(
00151  const TVec<TFltPr>& XY, double& A, double& B,
00152  double& SigA, double& SigB, double& Chi2, double& R2) {
00153   // y = a + bx :: SigA (SigB): A's uncertainty; Chi2: std dev on all points
00154   int i;
00155   double t, sxoss, sx = 0.0, sy = 0.0, st2 = 0.0, ss, sigdat;
00156 
00157   A = B = SigA = SigB = Chi2 = 0.0;
00158   for (i = 0; i < XY.Len(); i++) {
00159     sx += XY[i].Val1;
00160     sy += XY[i].Val2;
00161   }
00162   ss = XY.Len();
00163   sxoss = sx / ss;
00164   for (i = 0; i <XY.Len(); i++) {
00165     t = XY[i].Val1 - sxoss;
00166     st2 += t*t;
00167     B += t * XY[i].Val2;
00168   }
00169   B /= st2;
00170   A = (sy - sx * B) / ss;
00171   SigA = sqrt((1.0 + sx * sx / (ss * st2)) / ss);
00172   SigB = sqrt(1.0 / st2);
00173   for (i = 0; i < XY.Len(); i++)
00174     Chi2 += TMath::Sqr(XY[i].Val2 - A - B * XY[i].Val1);
00175   sigdat = sqrt(Chi2 / (XY.Len() - 2));
00176   SigA *= sigdat;
00177   SigB *= sigdat;
00178 
00179   // calculate R squared
00180   { double N = XY.Len(), sXY=0.0, sX=0.0, sY=0.0, sSqX=0.0, sSqY=0.0;
00181   for (int s =0; s < XY.Len(); s++) {
00182     sX += XY[s].Val1;  sY += XY[s].Val2;
00183     sXY += XY[s].Val1 * XY[s].Val2;
00184     sSqX += TMath::Sqr(XY[s].Val1);
00185     sSqY += TMath::Sqr(XY[s].Val2);
00186   }
00187   R2 = TMath::Sqr(N*sXY - sX*sY) / ((N*sSqX - sX*sX) * (N*sSqY - sY*sY)); }
00188   if (1.1 < R2 || -1.1 > R2) R2 = 0.0;
00189   if (_isnan(A) || ! _finite(A)) A = 0.0;
00190   if (_isnan(B) || ! _finite(B)) B = 0.0;
00191 }
00192 
00193 void TSpecFunc::PowerFit(const TVec<TFltPr>& XY, double& A, double& B,
00194  double& SigA, double& SigB, double& Chi2, double& R2) {
00195   // y = a x^b :: SigA (SigB): A's uncertainty; Chi2: std dev on all points
00196   // log fit
00197   double AA, BB;
00198   TFltPrV LogXY(XY.Len(), 0);
00199   for (int s = 0; s < XY.Len(); s++) {
00200     LogXY.Add(TFltPr(log((double)XY[s].Val1), log((double)XY[s].Val2)));
00201   }
00202   TSpecFunc::LinearFit(LogXY, AA, BB, SigA, SigB, Chi2, R2);
00203   A = exp(AA);  B = BB;
00204   if (_isnan(AA) || ! _finite(AA)) A = 0.0;
00205   if (_isnan(BB) || ! _finite(BB)) B = 0.0;
00206 }
00207 
00208 void TSpecFunc::LogFit(const TVec<TFltPr>& XY, double& A, double& B,
00209  double& SigA, double& SigB, double& Chi2, double& R2) {
00210   // Y = A + B*log(X)
00211   TFltPrV LogXY(XY.Len(), 0);
00212   for (int s = 0; s < XY.Len(); s++) {
00213     LogXY.Add(TFltPr(log((double)XY[s].Val1), XY[s].Val2));
00214   }
00215   TSpecFunc::LinearFit(LogXY, A, B, SigA, SigB, Chi2, R2);
00216 }
00217 
00218 void TSpecFunc::ExpFit(const TVec<TFltPr>& XY, double& A, double& B,
00219  double& SigA, double& SigB, double& Chi2, double& R2) {
00220   // Y = A * exp(B*X)
00221   TFltPrV XLogY(XY.Len(), 0);
00222   double AA, BB;
00223   for (int s = 0; s < XY.Len(); s++) {
00224     XLogY.Add(TFltPr(XY[s].Val1, log((double)XY[s].Val2)));
00225   }
00226   TSpecFunc::LinearFit(XLogY, AA, BB, SigA, SigB, Chi2, R2);
00227   A = exp(AA);
00228   B = BB;
00229 }
00230 
00231 double TSpecFunc::Entropy(const TIntV& ValV) {
00232   TFltV NewValV(ValV.Len());
00233   for (int i = 0; i < ValV.Len(); i++) { NewValV[i] = ValV[i]; }
00234   return Entropy(NewValV);
00235 }
00236 
00237 // Entropy of a distribution: ValV[i] contains the number of events i
00238 double TSpecFunc::Entropy(const TFltV& ValV) {
00239   double Sum=0, Ent=0;
00240   for (int i = 0; i < ValV.Len(); i++) {
00241     const double& Val = ValV[i];
00242     if (Val > 0.0) { Ent -= Val * log(Val);  Sum += Val; }
00243   }
00244   if (Sum > 0.0) {
00245     Ent /= Sum;
00246     Ent += log(Sum);
00247     Ent /= TMath::LogOf2;
00248   } else return 1.0;
00249   return Ent;
00250 }
00251 
00252 void TSpecFunc::EntropyFracDim(const TIntV& ValV, TFltV& EntropyV) {
00253   TFltV NewValV(ValV.Len());
00254   for (int i = 0; i < ValV.Len(); i++) { 
00255     IAssert(ValV[i]==1 || ValV[i] == 0);
00256     NewValV[i] = ValV[i]; 
00257   }
00258   EntropyFracDim(NewValV, EntropyV);
00259 }
00260 
00261 // Entropy fractal dimension. Input is a vector {0,1}^n. 
00262 // Where 0 means the event did not occur, and 1 means it occured.
00263 // Works exactly as Mengzi Wang's code.
00264 void TSpecFunc::EntropyFracDim(const TFltV& ValV, TFltV& EntropyV) {
00265   TFltV ValV1, ValV2;
00266   int Pow2 = 1;
00267   while (2*Pow2 <= ValV.Len()) { Pow2 *= 2; }
00268   ValV1.Gen(Pow2);
00269   for (int i = 0; i < Pow2; i++) { ValV1[i] = ValV[i]; 
00270     IAssert(ValV[i]==1.0 || ValV[i] == 0.0); }
00271   EntropyV.Clr();
00272   EntropyV.Add(Entropy(ValV1)); // 2^Pow2 windows
00273   while (ValV1.Len() > 2) {
00274     ValV2.Gen(ValV1.Len() / 2);
00275     for (int i = 0; i < ValV1.Len(); i++) {
00276       ValV2[i/2] += ValV1[i];
00277     }
00278     EntropyV.Add(Entropy(ValV2));
00279     ValV1.MoveFrom(ValV2);
00280   }
00281   EntropyV.Reverse();
00282 }
00283 
00284 // solves for p: B = p * log2(p) + (1-p) * log2(1-p)
00285 double TSpecFunc::EntropyBias(const double& B){
00286   static TFltFltH BToP;
00287   if (BToP.Empty()) {
00288     for (double p = 0.5; p < 1.0; p +=0.0001) {
00289       double H = p * log(p) + (1.0-p) * log(1.0 - p);
00290       H = -H / log(2.0);
00291       BToP.AddDat(TMath::Round(H, 3), p);
00292     }
00293   }
00294   if (BToP.IsKey(TMath::Round(B, 3))) { return BToP.GetDat(TMath::Round(B, 3)); }
00295   else { return -1.0; }
00296 }
00297 
00298 // MLE of the power-law coefficient
00299 double TSpecFunc::GetPowerCoef(const TFltV& XValV, double MinX) {
00300   for (int i = 0; MinX <= 0.0 && i < XValV.Len(); i++) { 
00301     MinX = XValV[i]; }
00302   IAssert(MinX > 0.0);
00303   double LnSum=0.0;
00304   for (int i = 0; i < XValV.Len(); i++) {
00305     if (XValV[i].Val < MinX) continue;
00306     LnSum += log(XValV[i] / MinX);
00307   }
00308   return 1.0 + double(XValV.Len()) / LnSum;
00309 }
00310 
00311 double TSpecFunc::GetPowerCoef(const TFltPrV& XValCntV, double MinX) {
00312   for (int i = 0; MinX <= 0.0 && i < XValCntV.Len(); i++) { 
00313     MinX = XValCntV[i].Val1; }
00314   IAssert(MinX > 0.0);
00315   double NSamples=0.0, LnSum=0.0;
00316   for (int i = 0; i < XValCntV.Len(); i++) {
00317     if (XValCntV[i].Val1() < MinX) continue;
00318     LnSum += XValCntV[i].Val2 * log(XValCntV[i].Val1 / MinX);
00319     NSamples += XValCntV[i].Val2;
00320   }
00321   return 1.0 + NSamples / LnSum;
00322 }
00323 
00325 // Statistical-Moments
00326 TMom::TMom(const TFltV& _ValV):
00327   //WgtV(_ValV.Len(), 0), ValV(_ValV.Len(), 0),
00328   ValWgtV(_ValV.Len(), 0),
00329   SumW(), ValSumW(),
00330   UsableP(false), UnusableVal(-1),
00331   Mn(), Mx(),
00332   Mean(), Vari(), SDev(), SErr(),
00333   Median(), Quart1(), Quart3(),
00334   DecileV(), PercentileV(){
00335   for (int ValN=0; ValN<_ValV.Len(); ValN++){Add(_ValV[ValN], 1);}
00336   Def();
00337 }
00338 
00339 void TMom::Def(){
00340   IAssert(!DefP); DefP=true;
00341   UsableP=(SumW>0)&&(ValWgtV.Len()>0);
00342   if (UsableP){
00343     // Mn, Mx
00344     Mn=ValWgtV[0].Val1;
00345     Mx=ValWgtV[0].Val1;
00346     // Mean, Variance (Mn, Mx), Standard-Error
00347     Mean=ValSumW/SumW;
00348     Vari=0;
00349     if (ValWgtV.Len()>1){
00350       for (int ValN=0; ValN<ValWgtV.Len(); ValN++){
00351         const double Val=ValWgtV[ValN].Val1;
00352         Vari+=ValWgtV[ValN].Val2*TMath::Sqr(Val-Mean);
00353         if (Val<Mn){Mn=Val;}
00354         if (Val>Mx){Mx=Val;}
00355       }
00356       Vari=Vari/SumW;
00357       SErr=sqrt(Vari/(ValWgtV.Len()*(ValWgtV.Len()-1)));
00358     }
00359     // Standard-Deviation
00360     SDev=sqrt(double(Vari));
00361     // Median
00362     ValWgtV.Sort();
00363     double CurSumW = 0;
00364     for (int ValN=0; ValN<ValWgtV.Len(); ValN++){
00365       CurSumW += ValWgtV[ValN].Val2;
00366       if (CurSumW > 0.5*SumW) { 
00367         Median = ValWgtV[ValN].Val1; break; }
00368       else if (CurSumW == 0.5*SumW) {
00369         Median = 0.5 * (ValWgtV[ValN].Val1+ValWgtV[ValN+1].Val1); break; }
00370     }
00371     // Quartile-1 and Quartile-3
00372     Quart1=Quart3=TFlt::Mn;
00373     CurSumW = 0;
00374     for (int ValN=0; ValN<ValWgtV.Len(); ValN++){
00375       CurSumW += ValWgtV[ValN].Val2;
00376       if (Quart1==TFlt::Mn) {
00377         if (CurSumW > 0.25*SumW) {  Quart1 = ValWgtV[ValN].Val1; }
00378         //else if (CurSumW == 0.25*SumW) { Quart1 = 0.5 * (ValWgtV[ValN].Val1+ValWgtV[ValN+1].Val1); }
00379       } 
00380       if (Quart3==TFlt::Mn) {
00381         if (CurSumW > 0.75*SumW) { Quart3 = ValWgtV[ValN].Val1; }
00382         //else if (CurSumW == 0.75*SumW) { Quart3 = 0.5 * (ValWgtV[ValN].Val1+ValWgtV[ValN+1].Val1); }
00383       }
00384     }
00385     // Deciles & Percentiles
00386     CurSumW = 0;
00387     int DecileN = 1, PercentileN = 1;
00388     DecileV.Gen(11);  PercentileV.Gen(101);
00389     DecileV[0]=Mn; DecileV[10]=Mx;
00390     PercentileV[0]=Mn; PercentileV[100]=Mx;
00391     for (int ValN=0; ValN<ValWgtV.Len(); ValN++){
00392       CurSumW += ValWgtV[ValN].Val2;
00393       if (CurSumW > SumW*DecileN*0.1) { 
00394         DecileV[DecileN] = ValWgtV[ValN].Val1;  DecileN++; }
00395       if (CurSumW > SumW*PercentileN*0.01) {
00396         PercentileV[PercentileN] = ValWgtV[ValN].Val1;  PercentileN++; }
00397     }
00398   }
00399   ValWgtV.Clr();
00400 }
00401 
00402 
00403 
00404 double TMom::GetByNm(const TStr& MomNm) const {
00405   if (MomNm=="Mean"){return GetMean();}
00406   else if (MomNm=="Vari"){return GetVari();}
00407   else if (MomNm=="SDev"){return GetSDev();}
00408   else if (MomNm=="SErr"){return GetSErr();}
00409   else if (MomNm=="Median"){return GetMedian();}
00410   else if (MomNm=="Quart1"){return GetQuart1();}
00411   else if (MomNm=="Quart3"){return GetQuart3();}
00412   else if (MomNm=="Decile0"){return GetDecile(0);}
00413   else if (MomNm=="Decile1"){return GetDecile(1);}
00414   else if (MomNm=="Decile2"){return GetDecile(2);}
00415   else if (MomNm=="Decile3"){return GetDecile(3);}
00416   else if (MomNm=="Decile4"){return GetDecile(4);}
00417   else if (MomNm=="Decile5"){return GetDecile(5);}
00418   else if (MomNm=="Decile6"){return GetDecile(6);}
00419   else if (MomNm=="Decile7"){return GetDecile(7);}
00420   else if (MomNm=="Decile8"){return GetDecile(8);}
00421   else if (MomNm=="Decile9"){return GetDecile(9);}
00422   else if (MomNm=="Decile10"){return GetDecile(10);}
00423   else {Fail; return 0;}
00424 }
00425 
00426 TStr TMom::GetStrByNm(const TStr& MomNm, char* FmtStr) const {
00427   if (IsUsable()){
00428     if (FmtStr==NULL){
00429       return TFlt::GetStr(GetByNm(MomNm));
00430     } else {
00431       return TFlt::GetStr(GetByNm(MomNm), FmtStr);
00432     }
00433   } else {
00434     return "X";
00435   }
00436 }
00437 
00438 TStr TMom::GetStr(
00439  const char& SepCh, const char& DelimCh,
00440  const bool& DecileP, const bool& PercentileP, const TStr& FmtStr) const {
00441   TChA ChA;
00442   if (IsUsable()){
00443     ChA+="["; ChA+=SepCh;
00444     ChA+="Vals"; ChA+=DelimCh; ChA+=TInt::GetStr(GetVals()); ChA+=SepCh;
00445     ChA+="Min"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetMn(), FmtStr.CStr()); ChA+=SepCh;
00446     ChA+="Max"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetMx(), FmtStr.CStr()); ChA+=SepCh;
00447     ChA+="Mean"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetMean(), FmtStr.CStr()); ChA+=SepCh;
00448     //ChA+="Vari"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetVari(), FmtStr.CStr()); ChA+=SepCh;
00449     ChA+="SDev"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetSDev(), FmtStr.CStr()); ChA+=SepCh;
00450     //ChA+="SErr"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetSErr(), FmtStr.CStr()); ChA+=SepCh;
00451     ChA+="Quart1"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetQuart1(), FmtStr.CStr()); ChA+=SepCh;
00452     ChA+="Median"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetMedian(), FmtStr.CStr()); ChA+=SepCh;
00453     ChA+="Quart3"; ChA+=DelimCh; ChA+=TFlt::GetStr(GetQuart3(), FmtStr.CStr()); ChA+=SepCh;
00454     if (DecileP){
00455       for (int DecileN=0; DecileN<=10; DecileN++){
00456         ChA+="Dec"; ChA+=TInt::GetStr(DecileN);
00457         ChA+=DelimCh; ChA+=TFlt::GetStr(GetDecile(DecileN), FmtStr.CStr());
00458         ChA+=SepCh;
00459       }
00460     }
00461     if (PercentileP){
00462       for (int PercentileN=0; PercentileN<=100; PercentileN++){
00463         ChA+="Per"; ChA+=TInt::GetStr(PercentileN);
00464         ChA+=DelimCh; ChA+=TFlt::GetStr(GetPercentile(PercentileN), FmtStr.CStr());
00465         ChA+=SepCh;
00466       }
00467     }
00468     ChA+="]";
00469   } else {
00470     ChA="[Unusable]";
00471   }
00472   return ChA;
00473 }
00474 
00475 TStr TMom::GetNmVStr(const TStr& VarPfx,
00476  const char& SepCh, const bool& DecileP, const bool& PercentileP){
00477   TChA ChA;
00478   ChA+=VarPfx; ChA+="Vals"; ChA+=SepCh;
00479   ChA+=VarPfx; ChA+="Min"; ChA+=SepCh;
00480   ChA+=VarPfx; ChA+="Max"; ChA+=SepCh;
00481   ChA+=VarPfx; ChA+="Mean"; ChA+=SepCh;
00482   //ChA+=VarPfx; ChA+="Vari"; ChA+=SepCh;
00483   ChA+=VarPfx; ChA+="SDev"; ChA+=SepCh;
00484   //ChA+=VarPfx; ChA+="SErr"; ChA+=SepCh;
00485   ChA+=VarPfx; ChA+="Quart1"; ChA+=SepCh;
00486   ChA+=VarPfx; ChA+="Median"; ChA+=SepCh;
00487   ChA+=VarPfx; ChA+="Quart3";
00488   if (DecileP){
00489     ChA+=SepCh;
00490     for (int DecileN=0; DecileN<=10; DecileN++){
00491       ChA+=VarPfx; ChA+="Dec"; ChA+=TInt::GetStr(DecileN);
00492       if (DecileN<10){ChA+=SepCh;}
00493     }
00494   }
00495   if (PercentileP){
00496     ChA+=SepCh;
00497     for (int PercentileN=0; PercentileN<=100; PercentileN++){
00498       ChA+=VarPfx; ChA+="Per"; ChA+=TInt::GetStr(PercentileN);
00499       if (PercentileN<100){ChA+=SepCh;}
00500     }
00501   }
00502   return ChA;
00503 }
00504 
00505 TStr TMom::GetValVStr(
00506  const char& SepCh, const bool& DecileP, const bool& PercentileP) const {
00507   TChA ChA;
00508   if (IsUsable()){
00509     ChA+=TInt::GetStr(GetVals()); ChA+=SepCh;
00510     ChA+=TFlt::GetStr(GetMn()); ChA+=SepCh;
00511     ChA+=TFlt::GetStr(GetMx()); ChA+=SepCh;
00512     ChA+=TFlt::GetStr(GetMean()); ChA+=SepCh;
00513     //ChA+=TFlt::GetStr(GetVari()); ChA+=SepCh;
00514     ChA+=TFlt::GetStr(GetSDev()); ChA+=SepCh;
00515     //ChA+=TFlt::GetStr(GetSErr()); ChA+=SepCh;
00516     ChA+=TFlt::GetStr(GetQuart1()); ChA+=SepCh;
00517     ChA+=TFlt::GetStr(GetMedian()); ChA+=SepCh;
00518     ChA+=TFlt::GetStr(GetQuart3()); ChA+=SepCh;
00519     if (DecileP){
00520       for (int DecileN=0; DecileN<=10; DecileN++){
00521         ChA+=TFlt::GetStr(GetDecile(DecileN)); ChA+=SepCh;
00522       }
00523     }
00524     if (PercentileP){
00525       for (int PercentileN=0; PercentileN<=100; PercentileN++){
00526         ChA+=TFlt::GetStr(GetPercentile(PercentileN)); ChA+=SepCh;
00527       }
00528     }
00529   } else {
00530     int Vals=8;
00531     if (DecileP){Vals+=11;}
00532     if (PercentileP){Vals+=101;}
00533     for (int ValN=0; ValN<Vals; ValN++){
00534       ChA="[Unusable]";
00535       if (ValN<Vals-1){ChA+=SepCh;}
00536     }
00537   }
00538   return ChA;
00539 }
00540 
00542 // Correlation
00543 TCorr::TCorr(const TFltV& ValV1, const TFltV& ValV2):
00544   ValVLen(ValV1.Len()), CorrCf(), CorrCfPrb(), FisherZ(){
00545   static const double TINY=1.0e-20;
00546   IAssert(ValV1.Len()==ValV2.Len());
00547 
00548   // calculate the means
00549   double MeanVal1=0; double MeanVal2=0;
00550   {for (int ValN=0; ValN<ValVLen; ValN++){
00551     MeanVal1+=ValV1[ValN]; MeanVal2+=ValV2[ValN];}}
00552   MeanVal1/=ValVLen; MeanVal2/=ValVLen;
00553 
00554   // calculate correlation coefficient
00555   double yt, xt;
00556   double syy=0.0; double sxy=0.0; double sxx=0.0;
00557   {for (int ValN=0; ValN<ValVLen; ValN++){
00558     xt=ValV1[ValN]-MeanVal1;
00559     yt=ValV2[ValN]-MeanVal2;
00560     sxx+=xt*xt;
00561     syy+=yt*yt;
00562     sxy+=xt*yt;
00563   }}
00564   if (sxx*syy==0){
00565     CorrCf=0; //** not in numerical recipes - check why (pojavi se, ko so same nicle)
00566   } else {
00567     CorrCf=sxy/sqrt(sxx*syy);
00568   }
00569   // calculate correlation coefficient significance level
00570   double df=ValVLen-2;
00571   double t=CorrCf*sqrt(df/((1.0-CorrCf+TINY)*(1.0+CorrCf+TINY)));
00572   CorrCfPrb=TSpecFunc::BetaI(0.5*df,0.5,df/(df+t*t));
00573   // calculate Fisher's Z transformation
00574   FisherZ=0.5*log((1.0+(CorrCf)+TINY)/(1.0-(CorrCf)+TINY));
00575 }
00576 
00578 // Statistical Tests
00579 void TStatTest::AveVar(const TFltV& ValV, double& Ave, double& Var){
00580   Ave=0;
00581   for (int ValN=0; ValN<ValV.Len(); ValN++){
00582     Ave+=ValV[ValN];}
00583   Ave/=ValV.Len();
00584   Var=0;
00585   double ep=0;
00586   for (int ValN=0; ValN<ValV.Len(); ValN++){
00587     double s=ValV[ValN]-Ave;
00588     ep+=s;
00589     Var+=s*s;
00590   }
00591   Var=(Var-ep*ep/ValV.Len())/(ValV.Len()-1);
00592 }
00593 
00594 double TStatTest::KsProb(const double& Alam) {
00595   const double EPS1 = 0.001;
00596   const double EPS2 = 1.0e-8;
00597   double a2 = -2.0*Alam*Alam, fac = 2.0, sum = 0.0, term, termbf = 0.0;
00598   for (int j=1; j <= 100; j++) {
00599     term = fac*exp(a2*j*j);
00600     sum += term;
00601     if (fabs(term) <= EPS1*termbf || fabs(term) <= EPS2*sum)
00602       return sum;
00603     fac = -fac;
00604     termbf = fabs(term);
00605   }
00606   return 1.0;
00607 }
00608 
00609 void TStatTest::ChiSquareOne(
00610  const TFltV& ObservedBinV, const TFltV& ExpectedBinV,
00611  double& ChiSquareVal, double& SignificancePrb){
00612   IAssert(ObservedBinV.Len()==ExpectedBinV.Len());
00613   int Bins=ObservedBinV.Len();
00614   int Constraints=0;
00615   int DegreesOfFreedom=Bins-Constraints;
00616   ChiSquareVal=0.0;
00617   for (int BinN=0; BinN<Bins; BinN++){
00618     IAssert(ExpectedBinV[BinN]>0);
00619     double BinDiff=ObservedBinV[BinN]-ExpectedBinV[BinN];
00620     ChiSquareVal+=BinDiff*BinDiff/ExpectedBinV[BinN];
00621   }
00622   SignificancePrb=
00623    TSpecFunc::GammaQ(0.5*(DegreesOfFreedom), 0.5*(ChiSquareVal));
00624 }
00625 
00626 void TStatTest::ChiSquareTwo(
00627  const TFltV& ObservedBin1V, const TFltV& ObservedBin2V,
00628  double& ChiSquareVal, double& SignificancePrb){
00629   IAssert(ObservedBin1V.Len()==ObservedBin1V.Len());
00630   int Bins=ObservedBin1V.Len();
00631   int Constraints=0;
00632   int DegreesOfFreedom=Bins-Constraints;
00633   ChiSquareVal=0.0;
00634   for (int BinN=0; BinN<Bins; BinN++){
00635     if ((ObservedBin1V[BinN]==0.0) && (ObservedBin2V[BinN]==0.0)){
00636       DegreesOfFreedom--;
00637     } else {
00638       double BinDiff=ObservedBin1V[BinN]-ObservedBin2V[BinN];
00639       ChiSquareVal+=BinDiff*BinDiff/(ObservedBin1V[BinN]+ObservedBin2V[BinN]);
00640     }
00641   }
00642   SignificancePrb=
00643    TSpecFunc::GammaQ(0.5*(DegreesOfFreedom),0.5*(ChiSquareVal));
00644 }
00645 
00646 void TStatTest::TTest(
00647  const TFltV& ValV1, const TFltV& ValV2, double& TTestVal, double& TTestPrb){
00648   /*double Ave1; double Var1;
00649   AveVar(ValV1, Ave1, Var1);
00650   double Ave2; double Var2;
00651   AveVar(ValV2, Ave2, Var2);*/
00652 
00653   PMom Val1Mom=TMom::New(ValV1);
00654   PMom Val2Mom=TMom::New(ValV2);
00655   double ave1=Val1Mom->GetMean();
00656   double ave2=Val2Mom->GetMean();
00657   double var1=Val1Mom->GetVari();
00658   double var2=Val2Mom->GetVari();
00659   int n1=ValV1.Len();
00660   int n2=ValV2.Len();
00661 
00662   TTestVal=(ave1-ave2)/sqrt(var1/n1+var2/n2);
00663   double df=TMath::Sqr(var1/n1+var2/n2)/(TMath::Sqr(var1/n1)/(n1-1)+TMath::Sqr(var2/n2)/(n2-1));
00664   TTestPrb=TSpecFunc::BetaI(0.5*df, 0.5, df/(df+TMath::Sqr(TTestVal)));
00665 }
00666 
00667 void TStatTest::KsTest(const TFltV& ValV1, const TFltV& ValV2, double& DStat, double& PVal) {
00668   IAssert(ValV1.IsSorted() && ValV2.IsSorted());
00669   int i1=0, i2=0;
00670   double CumSum1=0.0, CumSum2=0.0, Cdf1=0.0, Cdf2=0.0;
00671   const double N1 = ValV1.Len();
00672   const double N2 = ValV2.Len();
00673   if (! (N1 > 0.0 && N2 > 0.0)) { DStat = 1.0;  PVal = 0.0;  return; }
00674   DStat=0.0; PVal=0.0;
00675   while (i1 < ValV1.Len() && i2 < ValV2.Len()) {
00676     const double X1 = ValV1[i1];
00677     const double X2 = ValV2[i2];
00678     if (X1 <= X2) {
00679       CumSum1 += 1;
00680       Cdf1 = (CumSum1 / N1);
00681       i1++;
00682     }
00683     if (X2 <= X1) {
00684       CumSum2 += 1;
00685       Cdf2 = (CumSum2 / N2);
00686       i2++;
00687     }
00688     DStat = TMath::Mx(DStat, fabs(Cdf1 - Cdf2));
00689   }
00690   const double En = sqrt( N1*N2 / (N1+N2));
00691   PVal = TStatTest::KsProb((En+0.12+0.11/En)*DStat);
00692 }
00693 
00694 void TStatTest::KsTest(const TFltPrV& ValCntV1, const TFltPrV& ValCntV2, double& DStat, double& PVal) {
00695   IAssert(ValCntV1.IsSorted() && ValCntV2.IsSorted());
00696   int i1=0, i2=0;
00697   double N1=0.0, N2=0.0, CumSum1=0.0, CumSum2=0.0, Cdf1=0.0, Cdf2=0.0;
00698   DStat=0.0;  PVal=0.0;
00699   for (int i = 0; i < ValCntV1.Len(); i++) N1 += ValCntV1[i].Val2;
00700   for (int i = 0; i < ValCntV2.Len(); i++) N2 += ValCntV2[i].Val2;
00701   if (! (N1 > 0.0 && N2 > 0.0)) { DStat = 1.0;  PVal = 0.0;  return; }
00702 
00703   while (i1 < ValCntV1.Len() && i2 < ValCntV2.Len()) {
00704     const double X1 = ValCntV1[i1].Val1;
00705     const double X2 = ValCntV2[i2].Val1;
00706     if (X1 <= X2) {
00707       CumSum1 += ValCntV1[i1].Val2;
00708       Cdf1 = (CumSum1 / N1);
00709       i1++;
00710     }
00711     if (X2 <= X1) {
00712       CumSum2 += ValCntV2[i2].Val2;
00713       Cdf2 = (CumSum2 / N2);
00714       i2++;
00715     }
00716     DStat = TMath::Mx(DStat, fabs(Cdf1 - Cdf2));
00717   }
00718   const double En = sqrt( N1*N2 / (N1+N2));
00719   PVal = TStatTest::KsProb((En+0.12+0.11/En)*DStat);
00720 }
00721 
00723 // Combinations
00724 bool TComb::GetNext(){
00725   if (ItemV.Len()==0){
00726     ItemV.Gen(Order, Order);
00727     for (int OrderN=0; OrderN<Order; OrderN++){
00728       ItemV[OrderN]=OrderN;}
00729     return true;
00730   } else {
00731     if (ItemV.Last()==Items-1){
00732       int OrderN=Order-1;
00733       while ((OrderN>=0)&&(ItemV[OrderN]==Items-(Order-OrderN-1)-1)){OrderN--;}
00734       if (OrderN<0){
00735         return false;
00736       } else {
00737         ItemV[OrderN]++;
00738         for (int SubOrderN=OrderN+1; SubOrderN<Order; SubOrderN++){
00739           ItemV[SubOrderN]=ItemV[SubOrderN-1]+1;}
00740         CombN++; return true;
00741       }
00742     } else {
00743       ItemV.Last()++; CombN++; return true;
00744     }
00745   }
00746 }
00747 
00748 int TComb::GetCombs() const {
00749   int LCombs=1; int HCombs=1;
00750   for (int OrderN=0; OrderN<Order; OrderN++){
00751     LCombs*=OrderN+1; HCombs*=Items-OrderN;}
00752   int Combs=HCombs/LCombs;
00753   return Combs;
00754 }
00755 
00756 void TComb::Wr(){
00757   printf("%d:[", GetCombN());
00758   for (int OrderN=0; OrderN<Order; OrderN++){
00759     if (OrderN>0){printf(" ");}
00760     printf("%d", ItemV[OrderN]());
00761   }
00762   printf("]\n");
00763 }
00764 
00766 // Linear-Regression
00767 PLinReg TLinReg::New(const TFltVV& _XVV, const TFltV& _YV, const TFltV& _SigV){
00768   PLinReg LinReg=PLinReg(new TLinReg());
00769   LinReg->XVV=_XVV;
00770   LinReg->YV=_YV;
00771   if (_SigV.Empty()){
00772     LinReg->SigV.Gen(LinReg->YV.Len());
00773     LinReg->SigV.PutAll(1);
00774   } else {
00775     LinReg->SigV=_SigV;
00776   }
00777   LinReg->Recs=LinReg->XVV.GetXDim();
00778   LinReg->Vars=LinReg->XVV.GetYDim();
00779   IAssert(LinReg->Recs>0);
00780   IAssert(LinReg->Vars>0);
00781   IAssert(LinReg->YV.Len()==LinReg->Recs);
00782   IAssert(LinReg->SigV.Len()==LinReg->Recs);
00783   LinReg->CovarVV.Gen(LinReg->Vars+1, LinReg->Vars+1);
00784   LinReg->CfV.Gen(LinReg->Vars+1);
00785   LinReg->NR_lfit();
00786   return LinReg;
00787 }
00788 
00789 void TLinReg::NR_covsrt(
00790  TFltVV& CovarVV, const int& Vars, const TIntV& ia, const int& mfit){
00791   for (int i=mfit+1; i<=Vars; i++){
00792     for (int j=1; j<=i; j++){
00793       CovarVV.At(i, j)=0; CovarVV.At(j, i)=0.0;}
00794   }
00795   int k=mfit;
00796   for (int j=Vars; j>=1; j--){
00797     if (ia[j]!=0){
00798       for (int i=1; i<=Vars; i++){Swap(CovarVV.At(i, k), CovarVV.At(i, j));}
00799       {for (int i=1; i<=Vars; i++){Swap(CovarVV.At(k, i), CovarVV.At(j, i));}}
00800       k--;
00801     }
00802   }
00803 }
00804 
00805 void TLinReg::NR_gaussj(TFltVV& a, const int& n, TFltVV& b, const int& m){
00806   int i, icol, irow=0, j, k, l, ll;
00807   double big, dum, pivinv;
00808 
00809   TIntV indxc(n+1);
00810   TIntV indxr(n+1);
00811   TIntV ipiv(n+1);
00812   for (j=1; j<=n; j++){ipiv[j]=0;}
00813   for (i=1; i<=n; i++){
00814     big=0.0;
00815     for (j=1; j<=n; j++){
00816       if (ipiv[j]!=1){
00817         for (k=1; k<=n; k++){
00818           if (ipiv[k]==0){
00819             if (fabs(double(a.At(j, k))) >= big){
00820               big=fabs(double(a.At(j, k)));
00821               irow=j;
00822               icol=k;
00823             }
00824           } else
00825           if (ipiv[k]>1){
00826             TExcept::Throw("Singular Matrix(1) in Gauss");}
00827         }
00828       }
00829     }
00830     ipiv[icol]++;
00831     if (irow != icol){
00832       for (l=1; l<=n; l++){Swap(a.At(irow, l), a.At(icol, l));}
00833       for (l=1; l<=m; l++){Swap(b.At(irow, l), b.At(icol, l));}
00834     }
00835     indxr[i]=irow;
00836     indxc[i]=icol;
00837     if (a.At(icol, icol)==0.0){
00838       TExcept::Throw("Singular Matrix(1) in Gauss");}
00839     pivinv=1.0/a.At(icol, icol);
00840     a.At(icol, icol)=1.0;
00841     for (l=1; l<=n; l++){a.At(icol, l)=a.At(icol, l)*pivinv;}
00842     for (l=1; l<=m; l++){b.At(icol, l)=b.At(icol, l)*pivinv;}
00843     for (ll=1; ll<=n; ll++){
00844       if (ll != icol){
00845         dum=a.At(ll, icol);
00846         a.At(ll, icol)=0.0;
00847         for (l=1;l<=n;l++){a.At(ll, l)-=a.At(icol, l)*dum;}
00848         for (l=1;l<=m;l++){b.At(ll, l)-=b.At(icol, l)*dum;}
00849       }
00850     }
00851   }
00852   for (l=n; l>=1; l--){
00853     if (indxr[l]!=indxc[l]){
00854       for (k=1; k<=n; k++){
00855         Swap(a.At(k, indxr[l]), a.At(k, indxc[l]));}
00856     }
00857   }
00858 }
00859 
00860 void TLinReg::NR_lfit(){
00861   int i,j,k,l,m,mfit=0;
00862   double ym,wt,sum,sig2i;
00863 
00864   TIntV ia(Vars+1); for (i=1; i<=Vars; i++){ia[i]=1;}
00865   TFltVV beta(Vars+1, 1+1);
00866   TFltV afunc(Vars+1);
00867   for (j=1;j<=Vars;j++){
00868     if (ia[j]!=0){mfit++;}}
00869   if (mfit==0){TExcept::Throw("No parameters to be fitted in LFit");}
00870   for (j=1; j<=mfit; j++){
00871     for (k=1; k<=mfit; k++){CovarVV.At(j, k)=0.0;}
00872     beta.At(j, 1)=0.0;
00873   }
00874   for (i=1; i<=Recs; i++){
00875     GetXV(i, afunc); // funcs(XVV[i],afunc,Vars);
00876     ym=GetY(i);
00877     if (mfit<Vars){
00878       for (j=1;j<=Vars;j++){
00879         if (ia[j]==0){ym-=CfV[j]*afunc[j];}}
00880     }
00881     sig2i=1.0/TMath::Sqr(GetSig(i));
00882     for (j=0, l=1; l<=Vars; l++){
00883       if (ia[l]!=0){
00884         wt=afunc[l]*sig2i;
00885         for (j++, k=0, m=1; m<=l; m++){
00886           if (ia[m]!=0){CovarVV.At(j, ++k)+=wt*afunc[m];}
00887         }
00888         beta.At(j, 1)+=ym*wt;
00889       }
00890     }
00891   }
00892   for (j=2; j<=mfit; j++){
00893     for (k=1; k<j; k++){CovarVV.At(k, j)=CovarVV.At(j, k);}
00894   }
00895   NR_gaussj(CovarVV, mfit, beta, 1);
00896   for (j=0, l=1; l<=Vars; l++){
00897     if (ia[l]!=0){CfV[l]=beta.At(++j, 1);}
00898   }
00899   ChiSq=0.0;
00900   for (i=1; i<=Recs; i++){
00901     GetXV(i, afunc); // funcs(XVV[i],afunc,Vars);
00902     for (sum=0.0, j=1; j<=Vars; j++){sum+=CfV[j]*afunc[j];}
00903     ChiSq+=TMath::Sqr((GetY(i)-sum)/GetSig(i));
00904   }
00905   NR_covsrt(CovarVV, Vars, ia, mfit);
00906 }
00907 
00908 void TLinReg::Wr() const {
00909   printf("\n%11s %21s\n","parameter","uncertainty");
00910   for (int i=0; i<Vars;i++){
00911     printf("  a[%1d] = %8.6f %12.6f\n",
00912      i+1, GetCf(i), GetCfUncer(i));
00913   }
00914   printf("chi-squared = %12f\n", GetChiSq());
00915 
00916   printf("full covariance matrix\n");
00917   {for (int i=0;i<Vars;i++){
00918     for (int j=0;j<Vars;j++){
00919       printf("%12f", GetCovar(i, j));}
00920     printf("\n");
00921   }}
00922 }
00923 
00925 // Singular-Value-Decomposition
00926 PSvd TSvd::New(const TFltVV& _XVV, const TFltV& _YV, const TFltV& _SigV){
00927   PSvd Svd=PSvd(new TSvd());
00928   Svd->XVV=_XVV;
00929   Svd->YV=_YV;
00930   if (_SigV.Empty()){
00931     Svd->SigV.Gen(Svd->YV.Len());
00932     Svd->SigV.PutAll(1);
00933   } else {
00934     Svd->SigV=_SigV;
00935   }
00936   Svd->Recs=Svd->XVV.GetXDim();
00937   Svd->Vars=Svd->XVV.GetYDim();
00938   IAssert(Svd->Recs>0);
00939   IAssert(Svd->Vars>0);
00940   IAssert(Svd->YV.Len()==Svd->Recs);
00941   IAssert(Svd->SigV.Len()==Svd->Recs);
00942   Svd->CovarVV.Gen(Svd->Vars+1, Svd->Vars+1);
00943   Svd->CfV.Gen(Svd->Vars+1);
00944   Svd->NR_svdfit();
00945   return Svd;
00946 }
00947 
00948 double TSvd::NR_pythag(double a, double b){
00949   double absa,absb;
00950   absa=fabs(a);
00951   absb=fabs(b);
00952   if (absa > absb){
00953     return absa*sqrt(1.0+TMath::Sqr(absb/absa));
00954   } else {
00955     return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+TMath::Sqr(absa/absb)));
00956   }
00957 }
00958 
00959 void TSvd::NR_svdcmp(TFltVV& a, int m, int n, TFltV& w, TFltVV& v){
00960   int flag,i,its,j,jj,k,l=0,nm;
00961   double anorm,c,f,g,h,s,scale,x,y,z;
00962 
00963   TFltV rv1(n+1);
00964   g=scale=anorm=0.0;
00965   for (i=1;i<=n;i++) {
00966     l=i+1;
00967     rv1[i]=scale*g;
00968     g=s=scale=0.0;
00969     if (i <= m) {
00970       for (k=i;k<=m;k++) scale += fabs(double(a.At(k,i)));
00971       if (scale) {
00972         for (k=i;k<=m;k++) {
00973           a.At(k,i) /= scale;
00974           s += a.At(k,i)*a.At(k,i);
00975         }
00976         f=a.At(i,i);
00977         g = -NR_SIGN(sqrt(s),f);
00978         h=f*g-s;
00979         a.At(i,i)=f-g;
00980         for (j=l;j<=n;j++) {
00981           for (s=0.0,k=i;k<=m;k++) s += a.At(k,i)*a(k,j);
00982           f=s/h;
00983           for (k=i;k<=m;k++) a.At(k,j) += f*a.At(k,i);
00984         }
00985         for (k=i;k<=m;k++) a.At(k,i) *= scale;
00986       }
00987     }
00988     w[i]=scale *g;
00989     g=s=scale=0.0;
00990     if (i <= m && i != n) {
00991       for (k=l;k<=n;k++) scale += fabs(double(a.At(i,k)));
00992       if (scale) {
00993         for (k=l;k<=n;k++) {
00994           a.At(i,k) /= scale;
00995           s += a.At(i,k)*a.At(i,k);
00996         }
00997         f=a.At(i,l);
00998         g = -NR_SIGN(sqrt(s),f);
00999         h=f*g-s;
01000         a.At(i,l)=f-g;
01001         for (k=l;k<=n;k++) rv1[k]=a.At(i,k)/h;
01002         for (j=l;j<=m;j++) {
01003           for (s=0.0,k=l;k<=n;k++) s += a.At(j,k)*a.At(i,k);
01004           for (k=l;k<=n;k++) a.At(j,k) += s*rv1[k];
01005         }
01006         for (k=l;k<=n;k++) a.At(i,k) *= scale;
01007       }
01008     }
01009     anorm=NR_FMAX(anorm,(fabs(double(w[i]))+fabs(double(rv1[i]))));
01010   }
01011   for (i=n;i>=1;i--) {
01012     if (i < n) {
01013       if (g) {
01014         for (j=l;j<=n;j++)
01015           v.At(j,i)=(a.At(i,j)/a.At(i,l))/g;
01016         for (j=l;j<=n;j++) {
01017           for (s=0.0,k=l;k<=n;k++) s += a.At(i,k)*v.At(k,j);
01018           for (k=l;k<=n;k++) v.At(k,j) += s*v.At(k,i);
01019         }
01020       }
01021       for (j=l;j<=n;j++) v.At(i,j)=v.At(j,i)=0.0;
01022     }
01023     v.At(i,i)=1.0;
01024     g=rv1[i];
01025     l=i;
01026   }
01027   for (i=NR_IMIN(m,n);i>=1;i--) {
01028     l=i+1;
01029     g=w[i];
01030     for (j=l;j<=n;j++) a.At(i,j)=0.0;
01031     if (g) {
01032       g=1.0/g;
01033       for (j=l;j<=n;j++) {
01034         for (s=0.0,k=l;k<=m;k++) s += a.At(k,i)*a.At(k,j);
01035         f=(s/a.At(i,i))*g;
01036         for (k=i;k<=m;k++) a.At(k,j) += f*a.At(k,i);
01037       }
01038       for (j=i;j<=m;j++) a.At(j,i) *= g;
01039     } else for (j=i;j<=m;j++) a.At(j,i)=0.0;
01040     a.At(i,i)++;
01041   }
01042   for (k=n;k>=1;k--) {
01043     for (its=1;its<=30;its++) {
01044       flag=1;
01045       for (l=k;l>=1;l--) {
01046         nm=l-1;
01047         if ((double)(fabs(double(rv1[l])+anorm)) == anorm) {
01048           flag=0;
01049           break;
01050         }
01051         if ((double)(fabs(double(w[nm]))+anorm) == anorm) break;
01052       }
01053       if (flag) {
01054         c=0.0;
01055         s=1.0;
01056         for (i=l;i<=k;i++) {
01057           f=s*rv1[i];
01058           rv1[i]=c*rv1[i];
01059           if ((double)(fabs(f)+anorm) == anorm) break;
01060           g=w[i];
01061           h=NR_pythag(f,g);
01062           w[i]=h;
01063           h=1.0/h;
01064           c=g*h;
01065           s = -f*h;
01066           for (j=1;j<=m;j++) {
01067             y=a.At(j,nm);
01068             z=a.At(j,i);
01069             a.At(j,nm)=y*c+z*s;
01070             a.At(j,i)=z*c-y*s;
01071           }
01072         }
01073       }
01074       z=w[k];
01075       if (l == k) {
01076         if (z < 0.0) {
01077           w[k] = -z;
01078           for (j=1;j<=n;j++) v.At(j,k) = -v.At(j,k);
01079         }
01080         break;
01081       }
01082       if (its==30){
01083         TExcept::Throw("no convergence in 30 svdcmp iterations");}
01084       x=w[l];
01085       nm=k-1;
01086       y=w[nm];
01087       g=rv1[nm];
01088       h=rv1[k];
01089       f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
01090       g=NR_pythag(f,1.0);
01091       f=((x-z)*(x+z)+h*((y/(f+NR_SIGN(g,f)))-h))/x;
01092       c=s=1.0;
01093       for (j=l;j<=nm;j++) {
01094         i=j+1;
01095         g=rv1[i];
01096         y=w[i];
01097         h=s*g;
01098         g=c*g;
01099         z=NR_pythag(f,h);
01100         rv1[j]=z;
01101         c=f/z;
01102         s=h/z;
01103         f=x*c+g*s;
01104         g = g*c-x*s;
01105         h=y*s;
01106         y *= c;
01107         for (jj=1;jj<=n;jj++) {
01108           x=v.At(jj,j);
01109           z=v.At(jj,i);
01110           v.At(jj,j)=x*c+z*s;
01111           v.At(jj,i)=z*c-x*s;
01112         }
01113         z=NR_pythag(f,h);
01114         w[j]=z;
01115         if (z) {
01116           z=1.0/z;
01117           c=f*z;
01118           s=h*z;
01119         }
01120         f=c*g+s*y;
01121         x=c*y-s*g;
01122         for (jj=1;jj<=m;jj++) {
01123           y=a.At(jj,j);
01124           z=a.At(jj,i);
01125           a.At(jj,j)=y*c+z*s;
01126           a.At(jj,i)=z*c-y*s;
01127         }
01128       }
01129       rv1[l]=0.0;
01130       rv1[k]=f;
01131       w[k]=x;
01132     }
01133   }
01134 }
01135 
01136 void TSvd::NR_svbksb(
01137  TFltVV& u, TFltV& w, TFltVV& v, int m, int n, TFltV& b, TFltV& x){
01138   int jj,j,i;
01139   double s;
01140 
01141   TFltV tmp(n+1);
01142   for (j=1;j<=n;j++) {
01143     s=0.0;
01144     if (w[j]) {
01145       for (i=1;i<=m;i++) s += u.At(i,j)*b[i];
01146       s /= w[j];
01147     }
01148     tmp[j]=s;
01149   }
01150   for (j=1;j<=n;j++) {
01151     s=0.0;
01152     for (jj=1;jj<=n;jj++) s += v.At(j,jj)*tmp[jj];
01153     x[j]=s;
01154   }
01155 }
01156 
01157 void TSvd::NR_svdvar(TFltVV& v, int ma, TFltV& w, TFltVV& cvm){
01158   int k,j,i;
01159   double sum;
01160 
01161   TFltV wti(ma+1);
01162   for (i=1;i<=ma;i++) {
01163     wti[i]=0.0;
01164     if (w[i]) wti[i]=1.0/(w[i]*w[i]);
01165   }
01166   for (i=1;i<=ma;i++) {
01167     for (j=1;j<=i;j++) {
01168       for (sum=0.0,k=1;k<=ma;k++) sum += v.At(i,k)*v.At(j,k)*wti[k];
01169       cvm.At(j,i)=cvm.At(i,j)=sum;
01170     }
01171   }
01172 }
01173 
01174 void TSvd::NR_svdfit(){
01175   int j,i;
01176   double wmax,tmp,thresh,sum;
01177   double TOL=1.0e-5;
01178 
01179   TFltVV u(Recs+1, Vars+1);
01180   TFltVV v(Vars+1, Vars+1);
01181   TFltV w(Vars+1);
01182   TFltV b(Recs+1);
01183   TFltV afunc(Vars+1);
01184   for (i=1;i<=Recs;i++) {
01185     GetXV(i, afunc); // (*funcs)(x[i],afunc,Vars);
01186     tmp=1.0/GetSig(i);
01187     for (j=1;j<=Vars;j++){u.At(i,j)=afunc[j]*tmp;}
01188     b[i]=GetY(i)*tmp;
01189   }
01190   NR_svdcmp(u,Recs,Vars,w,v);
01191   wmax=0.0;
01192   for (j=1;j<=Vars;j++){
01193     if (w[j] > wmax){wmax=w[j];}}
01194   thresh=TOL*wmax;
01195   for (j=1;j<=Vars;j++){
01196     if (double(w[j])<thresh){w[j]=0.0;}}
01197   NR_svbksb(u,w,v,Recs,Vars,b,CfV);
01198   ChiSq=0.0;
01199   for (i=1;i<=Recs;i++) {
01200     GetXV(i, afunc); // (*funcs)(x[i],afunc,Vars);
01201     for (sum=0.0,j=1;j<=Vars;j++){sum += CfV[j]*afunc[j];}
01202     ChiSq += (tmp=(GetY(i)-sum)/GetSig(i),tmp*tmp);
01203   }
01204   // covariance matrix calculation
01205   CovarVV.Gen(Vars+1, Vars+1);
01206   NR_svdvar(v, Vars, w, CovarVV);
01207 }
01208 
01209 void TSvd::GetCfV(TFltV& _CfV){
01210   _CfV=CfV; _CfV.Del(0);
01211 }
01212 
01213 void TSvd::GetCfUncerV(TFltV& CfUncerV){
01214   CfUncerV.Gen(Vars);
01215   for (int VarN=0; VarN<Vars; VarN++){
01216     CfUncerV[VarN]=GetCfUncer(VarN);
01217   }
01218 }
01219 
01220 // all vectors (matrices) start with 0 
01221 void TSvd::Svd(const TFltVV& InMtx, TFltVV& LSingV, TFltV& SingValV, TFltVV& RSingV) {
01222   //LSingV = InMtx;
01223   LSingV.Gen(InMtx.GetYDim()+1, InMtx.GetYDim()+1);
01224   // create 1 based adjacency matrix
01225   for (int x = 0; x < InMtx.GetXDim(); x++) {
01226     for (int y = 0; y < InMtx.GetYDim(); y++) {
01227       LSingV.At(x+1, y+1) = InMtx.At(x, y);
01228     }
01229   }
01230   RSingV.Gen(InMtx.GetYDim()+1, InMtx.GetYDim()+1);
01231   SingValV.Gen(InMtx.GetYDim()+1);
01232   TSvd::NR_svdcmp(LSingV, InMtx.GetXDim(), InMtx.GetYDim(), SingValV, RSingV);
01233   // 0-th singular value/vector is full of zeros, delete it
01234   SingValV.Del(0);
01235   LSingV.DelX(0); LSingV.DelY(0);
01236   RSingV.DelX(0); RSingV.DelY(0);
01237 }
01238 
01239 // InMtx1 is 1-based (0-th row/column are full of zeros)
01240 // returned singular vectors/values are 0 based
01241 void TSvd::Svd1Based(const TFltVV& InMtx1, TFltVV& LSingV, TFltV& SingValV, TFltVV& RSingV) {
01242   LSingV = InMtx1;
01243   SingValV.Gen(InMtx1.GetYDim());
01244   RSingV.Gen(InMtx1.GetYDim(), InMtx1.GetYDim());
01245   TSvd::NR_svdcmp(LSingV, InMtx1.GetXDim()-1, InMtx1.GetYDim()-1, SingValV, RSingV);
01246   // 0-th singular value/vector is full of zeros, delete it
01247   SingValV.Del(0);
01248   LSingV.DelX(0); LSingV.DelY(0);
01249   RSingV.DelX(0); RSingV.DelY(0);
01250 }
01251 
01252 void TSvd::Wr() const {
01253   printf("\n%11s %21s\n","parameter","uncertainty");
01254   for (int i=0; i<Vars;i++){
01255     printf("  a[%1d] = %8.6f %12.6f\n",
01256      i+1, GetCf(i), GetCfUncer(i));
01257   }
01258   printf("chi-squared = %12f\n", GetChiSq());
01259 
01260   printf("full covariance matrix\n");
01261   {for (int i=0;i<Vars;i++){
01262     for (int j=0;j<Vars;j++){
01263       printf("%12f", GetCovar(i, j));}
01264     printf("\n");
01265   }}
01266 }
01267 
01269 // Histogram
01270 void THist::Add(const double& Val, const bool& OnlyInP) {
01271         // get bucket number
01272     const int BucketN = int(floor((Val - MnVal) / BucketSize));
01273         if (OnlyInP) { 
01274                 // value should be inside
01275                 EAssert(MnVal <= Val && Val <= MxVal);
01276                 BucketV[BucketN]++;
01277         } else {
01278                 // value does not need to be inside
01279                 if (BucketN < 0) {
01280                         BucketV[0]++;
01281                 } else if (BucketN < BucketV.Len()) {
01282                         BucketV[BucketN]++;
01283                 } else {
01284                         BucketV.Last()++;
01285                 }
01286         }
01287         // for computing percentage
01288         Vals++;
01289 }
01290 
01291 void THist::SaveStat(const TStr& ValNm, TSOut& FOut) const {
01292     FOut.PutStrLn("#" + ValNm + ": " + Vals.GetStr());
01293     const int Buckets = BucketV.Len() - 1;
01294     for (int BucketN = 0; BucketN < Buckets; BucketN++) {
01295         FOut.PutStrLn(TStr::Fmt("%d-%d\t%d", BucketSize*BucketN,
01296             BucketSize*(BucketN+1), BucketV[BucketN]()));
01297     }
01298     if (BucketV.Last() > 0) {
01299         FOut.PutStrLn(TStr::Fmt("%d-\t%d", BucketSize*Buckets, BucketV.Last()()));
01300     }
01301 
01302 }
01303