SNAP Library 2.1, Developer Reference  2013-09-25 10:47:25
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
statplot.cpp
Go to the documentation of this file.
00001 namespace TSnap {
00002 
00004 // Spectral graph properties
00005 void PlotEigValRank(const PUNGraph& Graph, const int& EigVals, const TStr& FNmPref, TStr DescStr) {
00006   TFltV EigValV;
00007   TSnap::GetEigVals(Graph, EigVals, EigValV);
00008   EigValV.Sort(false);
00009   if (DescStr.Empty()) { DescStr = FNmPref; }
00010   TGnuPlot::PlotValV(EigValV, "eigVal."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f",
00011     DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges(), EigValV[0].Val), "Rank", "Eigen value", gpsLog10XY, false, gpwLinesPoints);
00012 }
00013 
00014 void PlotEigValDistr(const PUNGraph& Graph, const int& EigVals, const TStr& FNmPref, TStr DescStr) {
00015   const int NBuckets = 50;
00016   TFltV EigValV;
00017   for (int f = 1; EigValV.Empty() && f < 4; f++) {
00018     TSnap::GetEigVals(Graph, f*EigVals, EigValV);
00019   }
00020   EigValV.Sort(true);
00021   THash<TFlt, TFlt> BucketCntH;
00022   double Step = (EigValV.Last()-EigValV[0]) / double(NBuckets-1);
00023   for (int i = 0; i < NBuckets; i++) {
00024     BucketCntH.AddDat(EigValV[0]+Step*(i+0.5), 0);
00025   }
00026   for (int i = 0; i < EigValV.Len(); i++) {
00027     const int Bucket = (int) floor((EigValV[i]-EigValV[0]) / Step);
00028     BucketCntH[Bucket] += 1;
00029   }
00030   TFltPrV EigCntV;
00031   BucketCntH.GetKeyDatPrV(EigCntV);
00032   if (DescStr.Empty()) { DescStr = FNmPref; }
00033   TGnuPlot::PlotValV(EigCntV, "eigDistr."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f", DescStr.CStr(),
00034     Graph->GetNodes(), Graph->GetEdges(), EigValV.Last().Val), "Eigen value", "Count", gpsAuto, false, gpwLinesPoints);
00035 }
00036 
00037 // Inverse participation ratio: normalize EigVec to have L2=1 and then I=sum_k EigVec[i]^4
00038 // see Spectra of "real-world" graphs: Beyond the semicircle law by Farkas, Derenyi, Barabasi and Vicsek
00039 void PlotInvParticipRat(const PUNGraph& Graph, const int& MaxEigVecs, const int& TimeLimit, const TStr& FNmPref, TStr DescStr) {
00040   TFltPrV EigIprV;
00041   GetInvParticipRat(Graph, MaxEigVecs, TimeLimit, EigIprV);
00042   if (DescStr.Empty()) { DescStr = FNmPref; }
00043   if (EigIprV.Empty()) { DescStr+=". FAIL"; EigIprV.Add(TFltPr(-1,-1)); return; }
00044   TGnuPlot::PlotValV(EigIprV, "eigIPR."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f (%d values)",
00045     DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges(), EigIprV.Last().Val1(), EigIprV.Len()),
00046     "Eigenvalue", "Inverse Participation Ratio of corresponding Eigenvector", gpsLog10Y, false, gpwPoints);
00047 }
00048 
00049 void PlotSngValRank(const PNGraph& Graph, const int& SngVals, const TStr& FNmPref, TStr DescStr) {
00050   TFltV SngValV;
00051   TSnap::GetSngVals(Graph, SngVals, SngValV);
00052   SngValV.Sort(false);
00053   if (DescStr.Empty()) { DescStr = FNmPref; }
00054   TGnuPlot::PlotValV(SngValV, "sngVal."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f",
00055     DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges(), SngValV[0].Val), "Rank", "Singular value", gpsLog10XY, false, gpwLinesPoints);
00056 }
00057 
00058 void PlotSngValDistr(const PNGraph& Graph, const int& SngVals, const TStr& FNmPref, TStr DescStr) {
00059   const int NBuckets = 50;
00060   TFltV SngValV;
00061   for (int f = 1; SngValV.Empty() && f < 4; f++) {
00062     TSnap::GetSngVals(Graph, f*SngVals, SngValV);
00063   }
00064   SngValV.Sort(true);
00065   THash<TFlt, TFlt> BucketCntH;
00066   double Step = (SngValV.Last()-SngValV[0]) / double(NBuckets-1);
00067   for (int i = 0; i < NBuckets; i++) {
00068     BucketCntH.AddDat(SngValV[0]+Step*(i+0.5), 0);
00069   }
00070   for (int i = 0; i < SngValV.Len(); i++) {
00071     const int Bucket = (int) floor((SngValV[i]-SngValV[0]) / Step);
00072     BucketCntH[Bucket] += 1;
00073   }
00074   TFltPrV EigCntV;
00075   BucketCntH.GetKeyDatPrV(EigCntV);
00076   if (DescStr.Empty()) { DescStr = FNmPref; }
00077   TGnuPlot::PlotValV(EigCntV, "sngDistr."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f", DescStr.CStr(),
00078     Graph->GetNodes(), Graph->GetEdges(), SngValV.Last().Val), "Singular value", "Count", gpsAuto, false, gpwLinesPoints);
00079 }
00080 
00081 void PlotSngVec(const PNGraph& Graph, const TStr& FNmPref, TStr DescStr) {
00082   TFltV LeftSV, RightSV;
00083   TSnap::GetSngVec(Graph, LeftSV, RightSV);
00084   LeftSV.Sort(false);
00085   RightSV.Sort(false);
00086   TFltV BinV;
00087   if (DescStr.Empty()) { DescStr = FNmPref; }
00088   TGUtil::MakeExpBins(LeftSV, BinV, 1.01);
00089   TGnuPlot::PlotValV(BinV, "sngVecL."+FNmPref, TStr::Fmt("%s. G(%d, %d). Left signular vector",
00090     DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges()), "Rank", "Component of left singular vector", gpsLog10XY, false, gpwLinesPoints);
00091   TGnuPlot::PlotValV(BinV, "sngVecL."+FNmPref, TStr::Fmt("%s. G(%d, %d). Right signular vector",
00092     DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges()), "Rank", "Component of right singular vector", gpsLog10XY, false, gpwLinesPoints);
00093 }
00094 
00095 } // namespace TSnap