SNAP Library , User Reference
2013-01-07 14:03:36
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
!!!!! MYUNGHWAN, CHECK! More...
#include <kronecker.h>
Public Member Functions | |
TKroneckerLL () | |
TKroneckerLL (const PNGraph &GraphPt, const TFltV &ParamV, const double &PermPSwapNd=0.2) | |
TKroneckerLL (const PNGraph &GraphPt, const TKronMtx &ParamMtx, const double &PermPSwapNd=0.2) | |
TKroneckerLL (const PNGraph &GraphPt, const TKronMtx &ParamMtx, const TIntV &NodeIdPermV, const double &PermPSwapNd=0.2) | |
int | GetNodes () const |
int | GetKronIters () const |
PNGraph | GetGraph () const |
void | SetGraph (const PNGraph &GraphPt) |
const TKronMtx & | GetProbMtx () const |
const TKronMtx & | GetLLMtx () const |
int | GetParams () const |
int | GetDim () const |
void | SetDebug (const bool Debug) |
const TFltV & | GetLLHist () const |
const TVec< TKronMtx > & | GetParamHist () const |
bool | IsObsNode (const int &NId) const |
bool | IsObsEdge (const int &NId1, const int &NId2) const |
bool | IsLatentNode (const int &NId) const |
bool | IsLatentEdge (const int &NId1, const int &NId2) const |
void | SetPerm (const char &PermId) |
void | SetOrderPerm () |
void | SetRndPerm () |
void | SetDegPerm () |
void | SetBestDegPerm () |
!!!!! MYUNGHWAN, CHECK! | |
void | SetPerm (const TIntV &NodePermV) |
void | SetIPerm (const TIntV &Perm) |
!!!!! MYUNGHWAN, CHECK! | |
const TIntV & | GetPermV () const |
void | AppendIsoNodes () |
void | RestoreGraph (const bool RestoreNodes=true) |
!!!!! MYUNGHWAN, CHECK! | |
double | GetFullGraphLL () const |
double | GetFullRowLL (int RowId) const |
double | GetFullColLL (int ColId) const |
double | GetEmptyGraphLL () const |
double | GetApxEmptyGraphLL () const |
void | InitLL (const TFltV &ParamV) |
void | InitLL (const TKronMtx &ParamMtx) |
void | InitLL (const PNGraph &GraphPt, const TKronMtx &ParamMtx) |
double | CalcGraphLL () |
double | CalcApxGraphLL () |
double | GetLL () const |
double | GetAbsErr () const |
double | NodeLLDelta (const int &NId) const |
double | SwapNodesLL (const int &NId1, const int &NId2) |
bool | SampleNextPerm (int &NId1, int &NId2) |
double | GetEmptyGraphDLL (const int &ParamId) const |
double | GetApxEmptyGraphDLL (const int &ParamId) const |
const TFltV & | CalcGraphDLL () |
const TFltV & | CalcFullApxGraphDLL () |
const TFltV & | CalcApxGraphDLL () |
double | NodeDLLDelta (const int ParamId, const int &NId) const |
void | UpdateGraphDLL (const int &SwapNId1, const int &SwapNId2) |
const TFltV & | GetDLL () const |
double | GetDLL (const int &ParamId) const |
void | SampleGradient (const int &WarmUp, const int &NSamples, double &AvgLL, TFltV &GradV) |
double | GradDescent (const int &NIter, const double &LrnRate, double MnStep, double MxStep, const int &WarmUp, const int &NSamples) |
double | GradDescent2 (const int &NIter, const double &LrnRate, double MnStep, double MxStep, const int &WarmUp, const int &NSamples) |
void | SetRandomEdges (const int &NEdges, const bool isDir=true) |
!!!!! MYUNGHWAN, CHECK! | |
void | MetroGibbsSampleSetup (const int &WarmUp) |
void | MetroGibbsSampleNext (const int &WarmUp, const bool DLLUpdate=false) |
void | RunEStep (const int &GibbsWarmUp, const int &WarmUp, const int &NSamples, TFltV &LLV, TVec< TFltV > &DLLV) |
double | RunMStep (const TFltV &LLV, const TVec< TFltV > &DLLV, const int &GradIter, const double &LrnRate, double MnStep, double MxStep) |
void | RunKronEM (const int &EMIter, const int &GradIter, double LrnRate, double MnStep, double MxStep, const int &GibbsWarmUp, const int &WarmUp, const int &NSamples, const TKronEMType &Type=kronNodeMiss, const int &NMissing=-1) |
TFltV | TestSamplePerm (const TStr &OutFNm, const int &WarmUp, const int &NSamples, const TKronMtx &TrueMtx, const bool &DoPlot=true) |
TFltQu | TestKronDescent (const bool &DoExact, const bool &TruePerm, double LearnRate, const int &WarmUp, const int &NSamples, const TKronMtx &TrueParam) |
void | GradDescentConvergence (const TStr &OutFNm, const TStr &Desc1, const bool &SamplePerm, const int &NIters, double LearnRate, const int &WarmUp, const int &NSamples, const int &AvgKGraphs, const TKronMtx &TrueParam) |
Static Public Member Functions | |
static PKroneckerLL | New () |
static PKroneckerLL | New (const PNGraph &GraphPt, const TKronMtx &ParamMtx, const double &PermPSwapNd=0.1) |
static PKroneckerLL | New (const PNGraph &GraphPt, const TKronMtx &ParamMtx, const TIntV &NodeIdPermV, const double &PermPSwapNd=0.2) |
static double | CalcChainR2 (const TVec< TFltV > &ChainLLV) |
static void | ChainGelmapRubinPlot (const TVec< TFltV > &ChainLLV, const TStr &OutFNm, const TStr &Desc) |
static void | TestBicCriterion (const TStr &OutFNm, const TStr &Desc1, const PNGraph &G, const int &GradIters, double LearnRate, const int &WarmUp, const int &NSamples, const int &TrueN0) |
static void | TestGradDescent (const int &KronIters, const int &KiloSamples, const TStr &Permutation) |
Private Attributes | |
TCRef | CRef |
PNGraph | Graph |
TInt | Nodes |
TInt | KronIters |
TFlt | PermSwapNodeProb |
TIntTrV | GEdgeV |
TIntTrV | LEdgeV |
TInt | LSelfEdge |
TIntV | NodePerm |
TIntV | InvertPerm |
TInt | RealNodes |
TInt | RealEdges |
TKronMtx | ProbMtx |
TKronMtx | LLMtx |
TFlt | LogLike |
TFltV | GradV |
TKronEMType | EMType |
TInt | MissEdges |
TBool | DebugMode |
TFltV | LLV |
TVec< TKronMtx > | MtxV |
Friends | |
class | TPt< TKroneckerLL > |
!!!!! MYUNGHWAN, CHECK!
Definition at line 116 of file kronecker.h.
TKroneckerLL::TKroneckerLL | ( | ) | [inline] |
Definition at line 150 of file kronecker.h.
: Nodes(-1), KronIters(-1), PermSwapNodeProb(0.2), RealNodes(-1), RealEdges(-1), LogLike(TKronMtx::NInf), EMType(kronNodeMiss), MissEdges(-1), DebugMode(false) { }
TKroneckerLL::TKroneckerLL | ( | const PNGraph & | GraphPt, |
const TFltV & | ParamV, | ||
const double & | PermPSwapNd = 0.2 |
||
) |
Definition at line 783 of file kronecker.cpp.
: PermSwapNodeProb(PermPSwapNd) { InitLL(GraphPt, TKronMtx(ParamV)); }
TKroneckerLL::TKroneckerLL | ( | const PNGraph & | GraphPt, |
const TKronMtx & | ParamMtx, | ||
const double & | PermPSwapNd = 0.2 |
||
) |
Definition at line 787 of file kronecker.cpp.
: PermSwapNodeProb(PermPSwapNd) { InitLL(GraphPt, ParamMtx); }
TKroneckerLL::TKroneckerLL | ( | const PNGraph & | GraphPt, |
const TKronMtx & | ParamMtx, | ||
const TIntV & | NodeIdPermV, | ||
const double & | PermPSwapNd = 0.2 |
||
) |
Definition at line 791 of file kronecker.cpp.
: PermSwapNodeProb(PermPSwapNd) { InitLL(GraphPt, ParamMtx); NodePerm = NodeIdPermV; SetIPerm(NodePerm); }
void TKroneckerLL::AppendIsoNodes | ( | ) |
const TFltV & TKroneckerLL::CalcApxGraphDLL | ( | ) |
Definition at line 1194 of file kronecker.cpp.
{ for (int ParamId = 0; ParamId < LLMtx.Len(); ParamId++) { double DLL = GetApxEmptyGraphDLL(ParamId); for (int nid = 0; nid < Nodes; nid++) { const TNGraph::TNodeI Node = Graph->GetNI(nid); const int SrcNId = NodePerm[nid]; for (int e = 0; e < Node.GetOutDeg(); e++) { const int DstNId = NodePerm[Node.GetOutNId(e)]; DLL = DLL - LLMtx.GetApxNoEdgeDLL(ParamId, SrcNId, DstNId, KronIters) + LLMtx.GetEdgeDLL(ParamId, SrcNId, DstNId, KronIters); } } GradV[ParamId] = DLL; } return GradV; }
double TKroneckerLL::CalcApxGraphLL | ( | ) |
Definition at line 1037 of file kronecker.cpp.
{ LogLike = GetApxEmptyGraphLL(); // O(N_0) for (int nid = 0; nid < Nodes; nid++) { const TNGraph::TNodeI Node = Graph->GetNI(nid); const int SrcNId = NodePerm[nid]; for (int e = 0; e < Node.GetOutDeg(); e++) { const int DstNId = NodePerm[Node.GetOutNId(e)]; LogLike = LogLike - LLMtx.GetApxNoEdgeLL(SrcNId, DstNId, KronIters) + LLMtx.GetEdgeLL(SrcNId, DstNId, KronIters); } } return LogLike; }
double TKroneckerLL::CalcChainR2 | ( | const TVec< TFltV > & | ChainLLV | ) | [static] |
Definition at line 1895 of file kronecker.cpp.
{ const double J = ChainLLV.Len(); const double K = ChainLLV[0].Len(); TFltV AvgJV; McMcGetAvgJ(ChainLLV, AvgJV); double AvgAvg; McMcGetAvgAvg(AvgJV, AvgAvg); IAssert(AvgJV.Len() == ChainLLV.Len()); double InChainVar=0, OutChainVar=0; // between chain var for (int j = 0; j < AvgJV.Len(); j++) { OutChainVar += TMath::Sqr(AvgJV[j] - AvgAvg); } OutChainVar = OutChainVar * (K/double(J-1)); printf("*** %g chains of len %g\n", J, K); printf(" ** between chain var: %f\n", OutChainVar); //within chain variance for (int j = 0; j < AvgJV.Len(); j++) { const TFltV& ChainV = ChainLLV[j]; for (int k = 0; k < ChainV.Len(); k++) { InChainVar += TMath::Sqr(ChainV[k] - AvgJV[j]); } } InChainVar = InChainVar * 1.0/double(J*(K-1)); printf(" ** within chain var: %f\n", InChainVar); const double PostVar = (K-1)/K * InChainVar + 1.0/K * OutChainVar; printf(" ** posterior var: %f\n", PostVar); const double ScaleRed = sqrt(PostVar/InChainVar); printf(" ** scale reduction (< 1.2): %f\n\n", ScaleRed); return ScaleRed; }
const TFltV & TKroneckerLL::CalcFullApxGraphDLL | ( | ) |
Definition at line 1176 of file kronecker.cpp.
{ for (int ParamId = 0; ParamId < LLMtx.Len(); ParamId++) { double DLL = 0.0; for (int NId1 = 0; NId1 < Nodes; NId1++) { for (int NId2 = 0; NId2 < Nodes; NId2++) { if (Graph->IsEdge(NId1, NId2)) { DLL += LLMtx.GetEdgeDLL(ParamId, NodePerm[NId1], NodePerm[NId2], KronIters); } else { DLL += LLMtx.GetApxNoEdgeDLL(ParamId, NodePerm[NId1], NodePerm[NId2], KronIters); } } } GradV[ParamId] = DLL; } return GradV; }
const TFltV & TKroneckerLL::CalcGraphDLL | ( | ) |
Definition at line 1158 of file kronecker.cpp.
{ for (int ParamId = 0; ParamId < LLMtx.Len(); ParamId++) { double DLL = 0.0; for (int NId1 = 0; NId1 < Nodes; NId1++) { for (int NId2 = 0; NId2 < Nodes; NId2++) { if (Graph->IsEdge(NId1, NId2)) { DLL += LLMtx.GetEdgeDLL(ParamId, NodePerm[NId1], NodePerm[NId2], KronIters); } else { DLL += LLMtx.GetNoEdgeDLL(ParamId, NodePerm[NId1], NodePerm[NId2], KronIters); } } } GradV[ParamId] = DLL; } return GradV; }
double TKroneckerLL::CalcGraphLL | ( | ) |
Definition at line 1022 of file kronecker.cpp.
{ LogLike = GetEmptyGraphLL(); // takes O(N^2) for (int nid = 0; nid < Nodes; nid++) { const TNGraph::TNodeI Node = Graph->GetNI(nid); const int SrcNId = NodePerm[nid]; for (int e = 0; e < Node.GetOutDeg(); e++) { const int DstNId = NodePerm[Node.GetOutNId(e)]; LogLike = LogLike - LLMtx.GetNoEdgeLL(SrcNId, DstNId, KronIters) + LLMtx.GetEdgeLL(SrcNId, DstNId, KronIters); } } return LogLike; }
void TKroneckerLL::ChainGelmapRubinPlot | ( | const TVec< TFltV > & | ChainLLV, |
const TStr & | OutFNm, | ||
const TStr & | Desc | ||
) | [static] |
Definition at line 1924 of file kronecker.cpp.
{ TFltPrV LenR2V; // how does potential scale reduction chainge with chain length TVec<TFltV> SmallLLV(ChainLLV.Len()); const int K = ChainLLV[0].Len(); const int Buckets=1000; const int BucketSz = K/Buckets; for (int b = 1; b < Buckets; b++) { const int End = TMath::Mn(BucketSz*b, K-1); for (int c = 0; c < ChainLLV.Len(); c++) { ChainLLV[c].GetSubValV(0, End, SmallLLV[c]); } LenR2V.Add(TFltPr(End, TKroneckerLL::CalcChainR2(SmallLLV))); } LenR2V.Add(TFltPr(K, TKroneckerLL::CalcChainR2(ChainLLV))); TGnuPlot::PlotValV(LenR2V, TStr::Fmt("gelman-%s", OutFNm.CStr()), TStr::Fmt("%s. %d chains of len %d. BucketSz: %d.", Desc.CStr(), ChainLLV.Len(), ChainLLV[0].Len(), BucketSz), "Chain length", "Potential scale reduction"); }
double TKroneckerLL::GetAbsErr | ( | ) | const [inline] |
double TKroneckerLL::GetApxEmptyGraphDLL | ( | const int & | ParamId | ) | const |
Definition at line 1147 of file kronecker.cpp.
{ double Sum=0.0, SumSq=0.0; for (int i = 0; i < ProbMtx.Len(); i++) { Sum += ProbMtx.At(i); SumSq += TMath::Sqr(ProbMtx.At(i)); } // d/dx -sum(x_i) - 0.5sum(x_i^2) = d/dx sum(theta)^k - 0.5 sum(theta^2)^k return -KronIters*pow(Sum, KronIters-1) - KronIters*pow(SumSq, KronIters-1)*ProbMtx.At(ParamId); }
double TKroneckerLL::GetApxEmptyGraphLL | ( | ) | const |
int TKroneckerLL::GetDim | ( | ) | const [inline] |
Definition at line 165 of file kronecker.h.
const TFltV& TKroneckerLL::GetDLL | ( | ) | const [inline] |
Definition at line 218 of file kronecker.h.
{ return GradV; }
double TKroneckerLL::GetDLL | ( | const int & | ParamId | ) | const [inline] |
Definition at line 219 of file kronecker.h.
{ return GradV[ParamId]; }
double TKroneckerLL::GetEmptyGraphDLL | ( | const int & | ParamId | ) | const |
Definition at line 1136 of file kronecker.cpp.
double TKroneckerLL::GetEmptyGraphLL | ( | ) | const |
double TKroneckerLL::GetFullColLL | ( | int | ColId | ) | const |
double TKroneckerLL::GetFullGraphLL | ( | ) | const |
Definition at line 943 of file kronecker.cpp.
{ // the number of times a seed matrix element appears in // the full kronecker adjacency matrix after KronIter // kronecker multiplications double ElemCnt = 1; const double dim = LLMtx.GetDim(); // count number of times x appears in the full kronecker matrix for (int i = 1; i < KronIters; i++) { ElemCnt = dim*dim*ElemCnt + TMath::Power(dim, 2*i); } return ElemCnt * LLMtx.GetMtxSum(); }
double TKroneckerLL::GetFullRowLL | ( | int | RowId | ) | const |
PNGraph TKroneckerLL::GetGraph | ( | ) | const [inline] |
Definition at line 160 of file kronecker.h.
{ return Graph; }
int TKroneckerLL::GetKronIters | ( | ) | const [inline] |
Definition at line 159 of file kronecker.h.
{ return KronIters; }
double TKroneckerLL::GetLL | ( | ) | const [inline] |
Definition at line 204 of file kronecker.h.
{ return LogLike; }
const TFltV& TKroneckerLL::GetLLHist | ( | ) | const [inline] |
Definition at line 168 of file kronecker.h.
{ return LLV; }
const TKronMtx& TKroneckerLL::GetLLMtx | ( | ) | const [inline] |
Definition at line 163 of file kronecker.h.
{ return LLMtx; }
int TKroneckerLL::GetNodes | ( | ) | const [inline] |
Definition at line 158 of file kronecker.h.
{ return Nodes; }
const TVec<TKronMtx>& TKroneckerLL::GetParamHist | ( | ) | const [inline] |
Definition at line 169 of file kronecker.h.
{ return MtxV; }
int TKroneckerLL::GetParams | ( | ) | const [inline] |
Definition at line 164 of file kronecker.h.
const TIntV& TKroneckerLL::GetPermV | ( | ) | const [inline] |
Definition at line 185 of file kronecker.h.
{ return NodePerm; }
const TKronMtx& TKroneckerLL::GetProbMtx | ( | ) | const [inline] |
Definition at line 162 of file kronecker.h.
{ return ProbMtx; }
double TKroneckerLL::GradDescent | ( | const int & | NIter, |
const double & | LrnRate, | ||
double | MnStep, | ||
double | MxStep, | ||
const int & | WarmUp, | ||
const int & | NSamples | ||
) |
!!!!! MYUNGHWAN, CHECK!
!!!!! MYUNGHWAN, CHECK!
Definition at line 1299 of file kronecker.cpp.
{ printf("\n----------------------------------------------------------------------\n"); printf("Fitting graph on %d nodes, %d edges\n", Graph->GetNodes(), Graph->GetEdges()); printf("Kron iters: %d (== %d nodes)\n\n", KronIters(), ProbMtx.GetNodes(KronIters())); TExeTm IterTm, TotalTm; double OldLL=-1e10, CurLL=0; const double EZero = pow((double) Graph->GetEdges(), 1.0/double(KronIters)); TFltV CurGradV, LearnRateV(GetParams()), LastStep(GetParams()); LearnRateV.PutAll(LrnRate); TKronMtx NewProbMtx = ProbMtx; if(DebugMode) { LLV.Gen(NIter, 0); MtxV.Gen(NIter, 0); } for (int Iter = 0; Iter < NIter; Iter++) { printf("%03d] ", Iter); SampleGradient(WarmUp, NSamples, CurLL, CurGradV); for (int p = 0; p < GetParams(); p++) { LearnRateV[p] *= 0.95; if (Iter < 1) { while (fabs(LearnRateV[p]*CurGradV[p]) > MxStep) { LearnRateV[p] *= 0.95; } while (fabs(LearnRateV[p]*CurGradV[p]) < 0.02) { LearnRateV[p] *= (1.0/0.95); } // move more } else { // set learn rate so that move for each parameter is inside the [MnStep, MxStep] while (fabs(LearnRateV[p]*CurGradV[p]) > MxStep) { LearnRateV[p] *= 0.95; printf(".");} while (fabs(LearnRateV[p]*CurGradV[p]) < MnStep) { LearnRateV[p] *= (1.0/0.95); printf("*");} if (MxStep > 3*MnStep) { MxStep *= 0.95; } } NewProbMtx.At(p) = ProbMtx.At(p) + LearnRateV[p]*CurGradV[p]; if (NewProbMtx.At(p) > 0.9999) { NewProbMtx.At(p)=0.9999; } if (NewProbMtx.At(p) < 0.0001) { NewProbMtx.At(p)=0.0001; } } printf(" trueE0: %.2f (%d), estE0: %.2f (%d), ERR: %f\n", EZero, Graph->GetEdges(), ProbMtx.GetMtxSum(), ProbMtx.GetEdges(KronIters), fabs(EZero-ProbMtx.GetMtxSum())); printf(" currLL: %.4f, deltaLL: %.4f\n", CurLL, CurLL-OldLL); // positive is good for (int p = 0; p < GetParams(); p++) { printf(" %d] %f <-- %f + %9f Grad: %9.1f Rate: %g\n", p, NewProbMtx.At(p), ProbMtx.At(p), (double)(LearnRateV[p]*CurGradV[p]), CurGradV[p](), LearnRateV[p]()); } if (Iter+1 < NIter) { // skip last update ProbMtx = NewProbMtx; ProbMtx.GetLLMtx(LLMtx); } OldLL=CurLL; printf("\n"); fflush(stdout); if(DebugMode) { LLV.Add(CurLL); MtxV.Add(NewProbMtx); } } printf("TotalExeTm: %s %g\n", TotalTm.GetStr(), TotalTm.GetSecs()); ProbMtx.Dump("FITTED PARAMS", false); return CurLL; }
double TKroneckerLL::GradDescent2 | ( | const int & | NIter, |
const double & | LrnRate, | ||
double | MnStep, | ||
double | MxStep, | ||
const int & | WarmUp, | ||
const int & | NSamples | ||
) |
Definition at line 1355 of file kronecker.cpp.
{ printf("\n----------------------------------------------------------------------\n"); printf("GradDescent2\n"); printf("Fitting graph on %d nodes, %d edges\n", Graph->GetNodes(), Graph->GetEdges()); printf("Skip moves that make likelihood smaller\n"); printf("Kron iters: %d (== %d nodes)\n\n", KronIters(), ProbMtx.GetNodes(KronIters())); TExeTm IterTm, TotalTm; double CurLL=0, NewLL=0; const double EZero = pow((double) Graph->GetEdges(), 1.0/double(KronIters)); TFltV CurGradV, NewGradV, LearnRateV(GetParams()), LastStep(GetParams()); LearnRateV.PutAll(LrnRate); TKronMtx NewProbMtx=ProbMtx, CurProbMtx=ProbMtx; bool GoodMove = false; // Start for (int Iter = 0; Iter < NIter; Iter++) { printf("%03d] ", Iter); if (! GoodMove) { SampleGradient(WarmUp, NSamples, CurLL, CurGradV); } CurProbMtx = ProbMtx; // update parameters for (int p = 0; p < GetParams(); p++) { while (fabs(LearnRateV[p]*CurGradV[p]) > MxStep) { LearnRateV[p] *= 0.95; printf(".");} while (fabs(LearnRateV[p]*CurGradV[p]) < MnStep) { LearnRateV[p] *= (1.0/0.95); printf("*");} NewProbMtx.At(p) = CurProbMtx.At(p) + LearnRateV[p]*CurGradV[p]; if (NewProbMtx.At(p) > 0.9999) { NewProbMtx.At(p)=0.9999; } if (NewProbMtx.At(p) < 0.0001) { NewProbMtx.At(p)=0.0001; } LearnRateV[p] *= 0.95; } printf(" "); ProbMtx=NewProbMtx; ProbMtx.GetLLMtx(LLMtx); SampleGradient(WarmUp, NSamples, NewLL, NewGradV); if (NewLL > CurLL) { // accept the move printf("== Good move:\n"); printf(" trueE0: %.2f (%d), estE0: %.2f (%d), ERR: %f\n", EZero, Graph->GetEdges(), ProbMtx.GetMtxSum(), ProbMtx.GetEdges(KronIters), fabs(EZero-ProbMtx.GetMtxSum())); printf(" currLL: %.4f deltaLL: %.4f\n", CurLL, NewLL-CurLL); // positive is good for (int p = 0; p < GetParams(); p++) { printf(" %d] %f <-- %f + %9f Grad: %9.1f Rate: %g\n", p, NewProbMtx.At(p), CurProbMtx.At(p), (double)(LearnRateV[p]*CurGradV[p]), CurGradV[p](), LearnRateV[p]()); } CurLL = NewLL; CurGradV = NewGradV; GoodMove = true; } else { printf("** BAD move:\n"); printf(" *trueE0: %.2f (%d), estE0: %.2f (%d), ERR: %f\n", EZero, Graph->GetEdges(), ProbMtx.GetMtxSum(), ProbMtx.GetEdges(KronIters), fabs(EZero-ProbMtx.GetMtxSum())); printf(" *curLL: %.4f deltaLL: %.4f\n", CurLL, NewLL-CurLL); // positive is good for (int p = 0; p < GetParams(); p++) { printf(" b%d] %f <-- %f + %9f Grad: %9.1f Rate: %g\n", p, NewProbMtx.At(p), CurProbMtx.At(p), (double)(LearnRateV[p]*CurGradV[p]), CurGradV[p](), LearnRateV[p]()); } // move to old position ProbMtx = CurProbMtx; ProbMtx.GetLLMtx(LLMtx); GoodMove = false; } printf("\n"); fflush(stdout); } printf("TotalExeTm: %s %g\n", TotalTm.GetStr(), TotalTm.GetSecs()); ProbMtx.Dump("FITTED PARAMS\n", false); return CurLL; }
void TKroneckerLL::GradDescentConvergence | ( | const TStr & | OutFNm, |
const TStr & | Desc1, | ||
const bool & | SamplePerm, | ||
const int & | NIters, | ||
double | LearnRate, | ||
const int & | WarmUp, | ||
const int & | NSamples, | ||
const int & | AvgKGraphs, | ||
const TKronMtx & | TrueParam | ||
) |
Definition at line 2017 of file kronecker.cpp.
{ TExeTm IterTm; int Iter; double OldLL=0, MyLL=0, AvgAbsErr=0, AbsSumErr=0; TFltV MyGradV, SDevV; TFltV LearnRateV(GetParams()); LearnRateV.PutAll(LearnRate); TFltPrV EZeroV, DiamV, Lambda1V, Lambda2V, AvgAbsErrV, AvgLLV; TFltPrV TrueEZeroV, TrueDiamV, TrueLambda1V, TrueLambda2V, TrueLLV; TFltV SngValV; TSnap::GetSngVals(Graph, 2, SngValV); SngValV.Sort(false); const double TrueEZero = pow((double) Graph->GetEdges(), 1.0/double(KronIters)); const double TrueEffDiam = TSnap::GetAnfEffDiam(Graph, false, 10); const double TrueLambda1 = SngValV[0]; const double TrueLambda2 = SngValV[1]; if (! TrueParam.Empty()) { const TKronMtx CurParam = ProbMtx; ProbMtx.Dump(); InitLL(TrueParam); SetOrderPerm(); CalcApxGraphLL(); printf("TrueLL: %f\n", LogLike()); OldLL = LogLike; InitLL(CurParam); } const double TrueLL = OldLL; if (! SamplePerm) { SetOrderPerm(); } else { SetDegPerm(); } for (Iter = 0; Iter < NIters; Iter++) { if (! SamplePerm) { // don't sample over permutations CalcApxGraphDLL(); CalcApxGraphLL(); // fast MyLL = LogLike; MyGradV = GradV; } else { // sample over permutations (approximate calculations) SampleGradient(WarmUp, NSamples, MyLL, MyGradV); } double SumDiam=0, SumSngVal1=0, SumSngVal2=0; for (int trial = 0; trial < AvgKGraphs; trial++) { // generate kronecker graph PNGraph KronGraph = TKronMtx::GenFastKronecker(ProbMtx, KronIters, true, 0); // approx //PNGraph KronGraph = TKronMtx::GenKronecker(ProbMtx, KronIters, true, 0); // true SngValV.Clr(true); TSnap::GetSngVals(KronGraph, 2, SngValV); SngValV.Sort(false); SumDiam += TSnap::GetAnfEffDiam(KronGraph, false, 10); SumSngVal1 += SngValV[0]; SumSngVal2 += SngValV[1]; } // how good is the current fit AvgLLV.Add(TFltPr(Iter, MyLL)); EZeroV.Add(TFltPr(Iter, ProbMtx.GetMtxSum())); DiamV.Add(TFltPr(Iter, SumDiam/double(AvgKGraphs))); Lambda1V.Add(TFltPr(Iter, SumSngVal1/double(AvgKGraphs))); Lambda2V.Add(TFltPr(Iter, SumSngVal2/double(AvgKGraphs))); TrueLLV.Add(TFltPr(Iter, TrueLL)); TrueEZeroV.Add(TFltPr(Iter, TrueEZero)); TrueDiamV.Add(TFltPr(Iter, TrueEffDiam)); TrueLambda1V.Add(TFltPr(Iter, TrueLambda1)); TrueLambda2V.Add(TFltPr(Iter, TrueLambda2)); if (Iter % 10 == 0) { const TStr Desc = TStr::Fmt("%s. Iter: %d, G(%d, %d) K(%d, %d)", Desc1.Empty()?OutFNm.CStr():Desc1.CStr(), Iter, Graph->GetNodes(), Graph->GetEdges(), ProbMtx.GetNodes(KronIters), ProbMtx.GetEdges(KronIters)); PlotTrueAndEst("LL."+OutFNm, Desc, "Average LL", AvgLLV, TrueLLV); PlotTrueAndEst("E0."+OutFNm, Desc, "E0 (expected number of edges)", EZeroV, TrueEZeroV); PlotTrueAndEst("Diam."+OutFNm+"-Diam", Desc, "Effective diameter", DiamV, TrueDiamV); PlotTrueAndEst("Lambda1."+OutFNm, Desc, "Lambda 1", Lambda1V, TrueLambda1V); PlotTrueAndEst("Lambda2."+OutFNm, Desc, "Lambda 2", Lambda2V, TrueLambda2V); if (! TrueParam.Empty()) { PlotTrueAndEst("AbsErr."+OutFNm, Desc, "Average Absolute Error", AvgAbsErrV, TFltPrV()); } } if (! TrueParam.Empty()) { AvgAbsErr = TKronMtx::GetAvgAbsErr(ProbMtx, TrueParam); AvgAbsErrV.Add(TFltPr(Iter, AvgAbsErr)); } else { AvgAbsErr = 1.0; } // update parameters AbsSumErr = fabs(ProbMtx.GetMtxSum() - TrueEZero); // update parameters for (int p = 0; p < GetParams(); p++) { LearnRateV[p] *= 0.99; while (fabs(LearnRateV[p]*MyGradV[p]) > 0.1) { LearnRateV[p] *= 0.99; printf(".");} while (fabs(LearnRateV[p]*MyGradV[p]) < 0.002) { LearnRateV[p] *= (1.0/0.95); printf("*");} printf(" %d] %f <-- %f + %9f Grad: %9.1f, Rate:%g\n", p, ProbMtx.At(p) + LearnRateV[p]*MyGradV[p], ProbMtx.At(p), (double)(LearnRateV[p]*MyGradV[p]), MyGradV[p](), LearnRateV[p]()); ProbMtx.At(p) = ProbMtx.At(p) + LearnRateV[p]*MyGradV[p]; // box constraints if (ProbMtx.At(p) > 1.0) { ProbMtx.At(p)=1.0; } if (ProbMtx.At(p) < 0.001) { ProbMtx.At(p)=0.001; } } printf("%d] LL: %g, ", Iter, MyLL); printf(" avgAbsErr: %.4f, absSumErr: %.4f, newLL: %.2f, deltaLL: %.2f\n", AvgAbsErr, AbsSumErr, MyLL, OldLL-MyLL); if (AvgAbsErr < 0.001) { printf("***CONVERGED!\n"); break; } printf("\n"); fflush(stdout); ProbMtx.GetLLMtx(LLMtx); OldLL = MyLL; } TrueParam.Dump("True Thetas", true); ProbMtx.Dump("Final Thetas", true); printf(" AvgAbsErr: %f\n AbsSumErr: %f\n Iterations: %d\n", AvgAbsErr, AbsSumErr, Iter); printf("Iteration run time: %s, sec: %g\n\n", IterTm.GetTmStr(), IterTm.GetSecs()); }
void TKroneckerLL::InitLL | ( | const TFltV & | ParamV | ) |
Definition at line 996 of file kronecker.cpp.
void TKroneckerLL::InitLL | ( | const TKronMtx & | ParamMtx | ) |
void TKroneckerLL::InitLL | ( | const PNGraph & | GraphPt, |
const TKronMtx & | ParamMtx | ||
) |
bool TKroneckerLL::IsLatentEdge | ( | const int & | NId1, |
const int & | NId2 | ||
) | const [inline] |
Definition at line 175 of file kronecker.h.
{ return !IsObsEdge(NId1, NId2); }
bool TKroneckerLL::IsLatentNode | ( | const int & | NId | ) | const [inline] |
Definition at line 174 of file kronecker.h.
{ return !IsObsNode(NId); }
bool TKroneckerLL::IsObsEdge | ( | const int & | NId1, |
const int & | NId2 | ||
) | const [inline] |
bool TKroneckerLL::IsObsNode | ( | const int & | NId | ) | const [inline] |
Definition at line 172 of file kronecker.h.
void TKroneckerLL::MetroGibbsSampleNext | ( | const int & | WarmUp, |
const bool | DLLUpdate = false |
||
) |
Definition at line 1503 of file kronecker.cpp.
{ int NId1 = 0, NId2 = 0, hit = 0, GId = 0; TIntTr EdgeToRemove, NewEdge; double RndAccept; if(LEdgeV.Len()) { for(int i = 0; i < WarmUp; i++) { hit = TKronMtx::Rnd.GetUniDevInt(LEdgeV.Len()); NId1 = LEdgeV[hit].Val1; NId2 = LEdgeV[hit].Val2; GId = LEdgeV[hit].Val3; SetRandomEdges(1, true); NewEdge = LEdgeV.Last(); RndAccept = (1.0 - exp(LLMtx.GetEdgeLL(NewEdge.Val1, NewEdge.Val2, KronIters))) / (1.0 - exp(LLMtx.GetEdgeLL(NId1, NId2, KronIters))); RndAccept = (RndAccept > 1.0) ? 1.0 : RndAccept; if(TKronMtx::Rnd.GetUniDev() > RndAccept) { // reject Graph->DelEdge(NewEdge.Val1, NewEdge.Val2); if(NewEdge.Val1 != NewEdge.Val2) { GEdgeV.DelLast(); } else { LSelfEdge--; } LEdgeV.DelLast(); } else { // accept Graph->DelEdge(NId1, NId2); LEdgeV[hit] = LEdgeV.Last(); LEdgeV.DelLast(); if(NId1 == NId2) { LSelfEdge--; if(NewEdge.Val1 != NewEdge.Val2) { GEdgeV[GEdgeV.Len()-1].Val3 = hit; } } else { IAssertR(GEdgeV.Last().Val3 >= 0, "Invalid indexing"); GEdgeV[GId] = GEdgeV.Last(); if(NewEdge.Val1 != NewEdge.Val2) { GEdgeV[GId].Val3 = hit; } LEdgeV[GEdgeV[GId].Val3].Val3 = GId; GEdgeV.DelLast(); } LogLike += LLMtx.GetApxNoEdgeLL(EdgeToRemove.Val1, EdgeToRemove.Val2, KronIters) - LLMtx.GetEdgeLL(EdgeToRemove.Val1, EdgeToRemove.Val2, KronIters); LogLike += -LLMtx.GetApxNoEdgeLL(NewEdge.Val1, NewEdge.Val2, KronIters) + LLMtx.GetEdgeLL(NewEdge.Val1, NewEdge.Val2, KronIters); if(DLLUpdate) { for (int p = 0; p < LLMtx.Len(); p++) { GradV[p] += LLMtx.GetApxNoEdgeDLL(p, EdgeToRemove.Val1, EdgeToRemove.Val2, KronIters) - LLMtx.GetEdgeDLL(p, EdgeToRemove.Val1, EdgeToRemove.Val2, KronIters); GradV[p] += -LLMtx.GetApxNoEdgeDLL(p, NewEdge.Val1, NewEdge.Val2, KronIters) + LLMtx.GetEdgeDLL(p, NewEdge.Val1, NewEdge.Val2, KronIters); } } } } } // CalcApxGraphLL(); for (int s = 0; s < WarmUp; s++) { if(SampleNextPerm(NId1, NId2)) { if(DLLUpdate) UpdateGraphDLL(NId1, NId2); } } }
void TKroneckerLL::MetroGibbsSampleSetup | ( | const int & | WarmUp | ) |
Definition at line 1476 of file kronecker.cpp.
{ double alpha = log(ProbMtx.GetMtxSum()) / log(double(ProbMtx.GetDim())); int NId1 = 0, NId2 = 0; int NMissing; RestoreGraph(false); if(EMType == kronEdgeMiss) { CalcApxGraphLL(); for (int s = 0; s < WarmUp; s++) SampleNextPerm(NId1, NId2); } if(EMType == kronFutureLink) { NMissing = (int) (pow(ProbMtx.GetMtxSum(), KronIters) - pow(double(RealNodes), alpha)); } else if(EMType == kronEdgeMiss) { NMissing = MissEdges; } else { NMissing = (int) (pow(ProbMtx.GetMtxSum(), KronIters) * (1.0 - pow(double(RealNodes) / double(Nodes), 2))); } NMissing = (NMissing < 1) ? 1 : NMissing; SetRandomEdges(NMissing, true); CalcApxGraphLL(); for (int s = 0; s < WarmUp; s++) SampleNextPerm(NId1, NId2); }
static PKroneckerLL TKroneckerLL::New | ( | ) | [inline, static] |
Definition at line 154 of file kronecker.h.
{ return new TKroneckerLL(); }
PKroneckerLL TKroneckerLL::New | ( | const PNGraph & | GraphPt, |
const TKronMtx & | ParamMtx, | ||
const double & | PermPSwapNd = 0.1 |
||
) | [static] |
Definition at line 797 of file kronecker.cpp.
{ return new TKroneckerLL(GraphPt, ParamMtx, PermPSwapNd); }
PKroneckerLL TKroneckerLL::New | ( | const PNGraph & | GraphPt, |
const TKronMtx & | ParamMtx, | ||
const TIntV & | NodeIdPermV, | ||
const double & | PermPSwapNd = 0.2 |
||
) | [static] |
Definition at line 801 of file kronecker.cpp.
{ return new TKroneckerLL(GraphPt, ParamMtx, NodeIdPermV, PermPSwapNd); }
double TKroneckerLL::NodeDLLDelta | ( | const int | ParamId, |
const int & | NId | ||
) | const |
Definition at line 1214 of file kronecker.cpp.
{ if (! Graph->IsNode(NId)) { return 0.0; } // zero degree node double Delta = 0.0; const TNGraph::TNodeI Node = Graph->GetNI(NId); const int SrcRow = NodePerm[NId]; for (int e = 0; e < Node.GetOutDeg(); e++) { const int DstCol = NodePerm[Node.GetOutNId(e)]; Delta += - LLMtx.GetApxNoEdgeDLL(ParamId, SrcRow, DstCol, KronIters) + LLMtx.GetEdgeDLL(ParamId, SrcRow, DstCol, KronIters); } const int SrcCol = NodePerm[NId]; for (int e = 0; e < Node.GetInDeg(); e++) { const int DstRow = NodePerm[Node.GetInNId(e)]; Delta += - LLMtx.GetApxNoEdgeDLL(ParamId, DstRow, SrcCol, KronIters) + LLMtx.GetEdgeDLL(ParamId, DstRow, SrcCol, KronIters); } // double counter self-edge if (Graph->IsEdge(NId, NId)) { Delta += + LLMtx.GetApxNoEdgeDLL(ParamId, SrcRow, SrcCol, KronIters) - LLMtx.GetEdgeDLL(ParamId, SrcRow, SrcCol, KronIters); IAssert(SrcRow == SrcCol); } return Delta; }
double TKroneckerLL::NodeLLDelta | ( | const int & | NId | ) | const |
Definition at line 1055 of file kronecker.cpp.
{ if (! Graph->IsNode(NId)) { return 0.0; } // zero degree node double Delta = 0.0; const TNGraph::TNodeI Node = Graph->GetNI(NId); // out-edges const int SrcRow = NodePerm[NId]; for (int e = 0; e < Node.GetOutDeg(); e++) { const int DstCol = NodePerm[Node.GetOutNId(e)]; Delta += - LLMtx.GetApxNoEdgeLL(SrcRow, DstCol, KronIters) + LLMtx.GetEdgeLL(SrcRow, DstCol, KronIters); } //in-edges const int SrcCol = NodePerm[NId]; for (int e = 0; e < Node.GetInDeg(); e++) { const int DstRow = NodePerm[Node.GetInNId(e)]; Delta += - LLMtx.GetApxNoEdgeLL(DstRow, SrcCol, KronIters) + LLMtx.GetEdgeLL(DstRow, SrcCol, KronIters); } // double counted self-edge if (Graph->IsEdge(NId, NId)) { Delta += + LLMtx.GetApxNoEdgeLL(SrcRow, SrcCol, KronIters) - LLMtx.GetEdgeLL(SrcRow, SrcCol, KronIters); IAssert(SrcRow == SrcCol); } return Delta; }
void TKroneckerLL::RestoreGraph | ( | const bool | RestoreNodes = true | ) |
!!!!! MYUNGHWAN, CHECK!
Definition at line 923 of file kronecker.cpp.
{ // remove from Graph int NId1, NId2; for (int e = 0; e < LEdgeV.Len(); e++) { NId1 = LEdgeV[e].Val1; NId2 = LEdgeV[e].Val2; Graph->DelEdge(NId1, NId2); // GEdgeV.DelIfIn(LEdgeV[e]); } if(LEdgeV.Len() - LSelfEdge) GEdgeV.Del(GEdgeV.Len() - LEdgeV.Len() + LSelfEdge, GEdgeV.Len() - 1); LEdgeV.Clr(); LSelfEdge = 0; if(RestoreNodes) { for(int i = Graph->GetNodes()-1; i >= RealNodes; i--) { Graph->DelNode(i); } } }
void TKroneckerLL::RunEStep | ( | const int & | GibbsWarmUp, |
const int & | WarmUp, | ||
const int & | NSamples, | ||
TFltV & | LLV, | ||
TVec< TFltV > & | DLLV | ||
) |
Definition at line 1567 of file kronecker.cpp.
{ TExeTm ExeTm, TotalTm; LLV.Gen(NSamples, 0); DLLV.Gen(NSamples, 0); ExeTm.Tick(); for(int i = 0; i < 2; i++) MetroGibbsSampleSetup(WarmUp); printf(" Warm-Up [%u] : %s\n", WarmUp, ExeTm.GetTmStr()); CalcApxGraphLL(); for(int i = 0; i < GibbsWarmUp; i++) MetroGibbsSampleNext(10, false); printf(" Gibbs Warm-Up [%u] : %s\n", GibbsWarmUp, ExeTm.GetTmStr()); ExeTm.Tick(); CalcApxGraphLL(); CalcApxGraphDLL(); for(int i = 0; i < NSamples; i++) { MetroGibbsSampleNext(50, false); LLV.Add(LogLike); DLLV.Add(GradV); int OnePercent = (i+1) % (NSamples / 10); if(OnePercent == 0) { int TenPercent = ((i+1) / (NSamples / 10)) * 10; printf(" %3u%% done : %s\n", TenPercent, ExeTm.GetTmStr()); } } }
void TKroneckerLL::RunKronEM | ( | const int & | EMIter, |
const int & | GradIter, | ||
double | LrnRate, | ||
double | MnStep, | ||
double | MxStep, | ||
const int & | GibbsWarmUp, | ||
const int & | WarmUp, | ||
const int & | NSamples, | ||
const TKronEMType & | Type = kronNodeMiss , |
||
const int & | NMissing = -1 |
||
) |
Definition at line 1692 of file kronecker.cpp.
{ printf("\n----------------------------------------------------------------------\n"); printf("Fitting graph on %d nodes, %d edges\n", int(RealNodes), int(RealEdges)); printf("Kron iters: %d (== %d nodes)\n\n", KronIters(), ProbMtx.GetNodes(KronIters())); TFltV LLV(NSamples); TVec<TFltV> DLLV(NSamples); //int count = 0; EMType = Type; MissEdges = NMissing; AppendIsoNodes(); SetRndPerm(); if(DebugMode) { LLV.Gen(EMIter, 0); MtxV.Gen(EMIter, 0); } for(int i = 0; i < EMIter; i++) { printf("\n----------------------------------------------------------------------\n"); printf("%03d EM-iter] E-Step\n", i+1); RunEStep(GibbsWarmUp, WarmUp, NSamples, LLV, DLLV); printf("\n\n"); printf("%03d EM-iter] M-Step\n", i+1); double CurLL = RunMStep(LLV, DLLV, GradIter, LrnRate, MnStep, MxStep); printf("\n\n"); if(DebugMode) { LLV.Add(CurLL); MtxV.Add(ProbMtx); } } RestoreGraph(); }
double TKroneckerLL::RunMStep | ( | const TFltV & | LLV, |
const TVec< TFltV > & | DLLV, | ||
const int & | GradIter, | ||
const double & | LrnRate, | ||
double | MnStep, | ||
double | MxStep | ||
) |
Definition at line 1597 of file kronecker.cpp.
{ TExeTm IterTm, TotalTm; double OldLL=LogLike, CurLL=0; const double alpha = log(double(RealEdges)) / log(double(RealNodes)); const double EZero = pow(double(ProbMtx.GetDim()), alpha); TFltV CurGradV(GetParams()), LearnRateV(GetParams()), LastStep(GetParams()); LearnRateV.PutAll(LrnRate); TKronMtx NewProbMtx = ProbMtx; const int NSamples = LLV.Len(); const int ReCalcLen = NSamples / 10; for (int s = 0; s < LLV.Len(); s++) { CurLL += LLV[s]; for(int p = 0; p < GetParams(); p++) { CurGradV[p] += DLLV[s][p]; } } CurLL /= NSamples; for(int p = 0; p < GetParams(); p++) { CurGradV[p] /= NSamples; } double MaxLL = CurLL; TKronMtx MaxProbMtx = ProbMtx; TKronMtx OldProbMtx = ProbMtx; for (int Iter = 0; Iter < GradIter; Iter++) { printf(" %03d] ", Iter+1); IterTm.Tick(); for (int p = 0; p < GetParams(); p++) { if (Iter < 1) { while (fabs(LearnRateV[p]*CurGradV[p]) > MxStep) { LearnRateV[p] *= 0.95; } while (fabs(LearnRateV[p]*CurGradV[p]) < 5 * MnStep) { LearnRateV[p] *= (1.0/0.95); } // move more } else { // set learn rate so that move for each parameter is inside the [MnStep, MxStep] while (fabs(LearnRateV[p]*CurGradV[p]) > MxStep) { LearnRateV[p] *= 0.95; printf(".");} while (fabs(LearnRateV[p]*CurGradV[p]) < MnStep) { LearnRateV[p] *= (1.0/0.95); printf("*");} if (MxStep > 3*MnStep) { MxStep *= 0.95; } } NewProbMtx.At(p) = ProbMtx.At(p) + LearnRateV[p]*CurGradV[p]; if (NewProbMtx.At(p) > 0.9999) { NewProbMtx.At(p)=0.9999; } if (NewProbMtx.At(p) < 0.0001) { NewProbMtx.At(p)=0.0001; } LearnRateV[p] *= 0.95; } printf(" trueE0: %.2f (%u from %u), estE0: %.2f (%u from %u), ERR: %f\n", EZero, RealEdges(), RealNodes(), ProbMtx.GetMtxSum(), Graph->GetEdges(), Graph->GetNodes(), fabs(EZero-ProbMtx.GetMtxSum())); printf(" currLL: %.4f, deltaLL: %.4f\n", CurLL, CurLL-OldLL); // positive is good for (int p = 0; p < GetParams(); p++) { printf(" %d] %f <-- %f + %9f Grad: %9.1f Rate: %g\n", p, NewProbMtx.At(p), ProbMtx.At(p), (double)(LearnRateV[p]*CurGradV[p]), CurGradV[p](), LearnRateV[p]()); } OldLL=CurLL; if(Iter == GradIter - 1) { break; } CurLL = 0; CurGradV.PutAll(0.0); TFltV OneDLL; CalcApxGraphLL(); CalcApxGraphDLL(); for(int s = 0; s < NSamples; s++) { ProbMtx = OldProbMtx; ProbMtx.GetLLMtx(LLMtx); MetroGibbsSampleNext(10, true); ProbMtx = NewProbMtx; ProbMtx.GetLLMtx(LLMtx); if(s % ReCalcLen == ReCalcLen/2) { CurLL += CalcApxGraphLL(); OneDLL = CalcApxGraphDLL(); } else { CurLL += LogLike; OneDLL = GradV; } for(int p = 0; p < GetParams(); p++) { CurGradV[p] += OneDLL[p]; } } CurLL /= NSamples; if(MaxLL < CurLL) { MaxLL = CurLL; MaxProbMtx = ProbMtx; } printf(" Time: %s\n", IterTm.GetTmStr()); printf("\n"); fflush(stdout); } ProbMtx = MaxProbMtx; ProbMtx.GetLLMtx(LLMtx); printf(" FinalLL : %f, TotalExeTm: %s\n", MaxLL, TotalTm.GetTmStr()); ProbMtx.Dump(" FITTED PARAMS", false); return MaxLL; }
void TKroneckerLL::SampleGradient | ( | const int & | WarmUp, |
const int & | NSamples, | ||
double & | AvgLL, | ||
TFltV & | GradV | ||
) |
Definition at line 1271 of file kronecker.cpp.
{ printf("SampleGradient: %s (%s warm-up):", TInt::GetMegaStr(NSamples).CStr(), TInt::GetMegaStr(WarmUp).CStr()); int NId1=0, NId2=0, NAccept=0; TExeTm ExeTm1; if (WarmUp > 0) { CalcApxGraphLL(); for (int s = 0; s < WarmUp; s++) { SampleNextPerm(NId1, NId2); } printf(" warm-up:%s,", ExeTm1.GetTmStr()); ExeTm1.Tick(); } CalcApxGraphLL(); // re-calculate LL (due to numerical errors) CalcApxGraphDLL(); AvgLL = 0; AvgGradV.Gen(LLMtx.Len()); AvgGradV.PutAll(0.0); printf(" sampl"); for (int s = 0; s < NSamples; s++) { if (SampleNextPerm(NId1, NId2)) { // new permutation UpdateGraphDLL(NId1, NId2); NAccept++; } for (int m = 0; m < LLMtx.Len(); m++) { AvgGradV[m] += GradV[m]; } AvgLL += GetLL(); } printf("ing"); AvgLL = AvgLL / double(NSamples); for (int m = 0; m < LLMtx.Len(); m++) { AvgGradV[m] = AvgGradV[m] / double(NSamples); } printf(":%s (%.0f/s), accept %.1f%%\n", ExeTm1.GetTmStr(), double(NSamples)/ExeTm1.GetSecs(), double(100*NAccept)/double(NSamples)); }
bool TKroneckerLL::SampleNextPerm | ( | int & | NId1, |
int & | NId2 | ||
) |
Definition at line 1111 of file kronecker.cpp.
{ // pick 2 uniform nodes and swap if (TKronMtx::Rnd.GetUniDev() < PermSwapNodeProb) { NId1 = TKronMtx::Rnd.GetUniDevInt(Nodes); NId2 = TKronMtx::Rnd.GetUniDevInt(Nodes); while (NId2 == NId1) { NId2 = TKronMtx::Rnd.GetUniDevInt(Nodes); } } else { // pick uniform edge and swap endpoints (slow as it moves around high degree nodes) const int e = TKronMtx::Rnd.GetUniDevInt(GEdgeV.Len()); NId1 = GEdgeV[e].Val1; NId2 = GEdgeV[e].Val2; } const double U = TKronMtx::Rnd.GetUniDev(); const double OldLL = LogLike; const double NewLL = SwapNodesLL(NId1, NId2); const double LogU = log(U); if (LogU > NewLL - OldLL) { // reject LogLike = OldLL; NodePerm.Swap(NId2, NId1); //swap back InvertPerm.Swap(NodePerm[NId2], NodePerm[NId1]); // swap back return false; } return true; // accept new sample }
void TKroneckerLL::SetBestDegPerm | ( | ) |
!!!!! MYUNGHWAN, CHECK!
Definition at line 842 of file kronecker.cpp.
{ NodePerm.Gen(Nodes); const int NZero = ProbMtx.GetDim(); TFltIntPrV DegV(Nodes), CDegV(Nodes); TFltV Row(NZero); TFltV Col(NZero); for(int i = 0; i < NZero; i++) { for(int j = 0; j < NZero; j++) { Row[i] += ProbMtx.At(i, j); Col[i] += ProbMtx.At(j, i); } } for(int i = 0; i < Nodes; i++) { TNGraph::TNodeI NodeI = Graph->GetNI(i); int NId = i; double RowP = 1.0, ColP = 1.0; for(int j = 0; j < KronIters; j++) { int Bit = NId % NZero; RowP *= Row[Bit]; ColP *= Col[Bit]; NId /= NZero; } CDegV[i] = TFltIntPr(RowP + ColP, i); DegV[i] = TFltIntPr(NodeI.GetDeg(), i); } DegV.Sort(false); CDegV.Sort(false); for(int i = 0; i < Nodes; i++) { NodePerm[DegV[i].Val2] = CDegV[i].Val2; } SetIPerm(NodePerm); }
void TKroneckerLL::SetDebug | ( | const bool | Debug | ) | [inline] |
Definition at line 167 of file kronecker.h.
{ DebugMode = Debug; }
void TKroneckerLL::SetDegPerm | ( | ) |
Definition at line 828 of file kronecker.cpp.
void TKroneckerLL::SetGraph | ( | const PNGraph & | GraphPt | ) |
Definition at line 882 of file kronecker.cpp.
{ Graph = GraphPt; bool NodesOk = true; // check that nodes IDs are {0,1,..,Nodes-1} for (int nid = 0; nid < Graph->GetNodes(); nid++) { if (! Graph->IsNode(nid)) { NodesOk=false; break; } } if (! NodesOk) { TIntV NIdV; GraphPt->GetNIdV(NIdV); Graph = TSnap::GetSubGraph(GraphPt, NIdV, true); for (int nid = 0; nid < Graph->GetNodes(); nid++) { IAssert(Graph->IsNode(nid)); } } Nodes = Graph->GetNodes(); IAssert(LLMtx.GetDim() > 1 && LLMtx.Len() == ProbMtx.Len()); KronIters = (int) ceil(log(double(Nodes)) / log(double(ProbMtx.GetDim()))); // edge vector (for swap-edge permutation proposal) // if (PermSwapNodeProb < 1.0) { /// !!!!! MYUNGHWAN, CHECK! WHY IS THIS COMMENTED OUT GEdgeV.Gen(Graph->GetEdges(), 0); for (TNGraph::TEdgeI EI = Graph->BegEI(); EI < Graph->EndEI(); EI++) { if (EI.GetSrcNId() != EI.GetDstNId()) { GEdgeV.Add(TIntTr(EI.GetSrcNId(), EI.GetDstNId(), -1)); } } // } RealNodes = Nodes; RealEdges = Graph->GetEdges(); LEdgeV = TIntTrV(); LSelfEdge = 0; }
void TKroneckerLL::SetIPerm | ( | const TIntV & | Perm | ) |
!!!!! MYUNGHWAN, CHECK!
Definition at line 875 of file kronecker.cpp.
{ InvertPerm.Gen(Perm.Len()); for (int i = 0; i < Perm.Len(); i++) { InvertPerm[Perm[i]] = i; } }
void TKroneckerLL::SetOrderPerm | ( | ) |
void TKroneckerLL::SetPerm | ( | const char & | PermId | ) |
Definition at line 805 of file kronecker.cpp.
{ if (PermId == 'o') { SetOrderPerm(); } else if (PermId == 'd') { SetDegPerm(); } else if (PermId == 'r') { SetRndPerm(); } else if (PermId == 'b') { SetBestDegPerm(); } else FailR("Unknown permutation type (o,d,r)"); }
void TKroneckerLL::SetPerm | ( | const TIntV & | NodePermV | ) | [inline] |
Definition at line 183 of file kronecker.h.
void TKroneckerLL::SetRandomEdges | ( | const int & | NEdges, |
const bool | isDir = true |
||
) |
!!!!! MYUNGHWAN, CHECK!
Definition at line 1417 of file kronecker.cpp.
{ int count = 0, added = 0, collision = 0; const int MtxDim = ProbMtx.GetDim(); const double MtxSum = ProbMtx.GetMtxSum(); TVec<TFltIntIntTr> ProbToRCPosV; // row, col position double CumProb = 0.0; for(int r = 0; r < MtxDim; r++) { for(int c = 0; c < MtxDim; c++) { const double Prob = ProbMtx.At(r, c); if (Prob > 0.0) { CumProb += Prob; ProbToRCPosV.Add(TFltIntIntTr(CumProb/MtxSum, r, c)); } } } int Rng, Row, Col, n, NId1, NId2; while(added < NEdges) { Rng = Nodes; Row = 0; Col = 0; for (int iter = 0; iter < KronIters; iter++) { const double& Prob = TKronMtx::Rnd.GetUniDev(); n = 0; while(Prob > ProbToRCPosV[n].Val1) { n++; } const int MtxRow = ProbToRCPosV[n].Val2; const int MtxCol = ProbToRCPosV[n].Val3; Rng /= MtxDim; Row += MtxRow * Rng; Col += MtxCol * Rng; } count++; NId1 = InvertPerm[Row]; NId2 = InvertPerm[Col]; // Check conflicts if(EMType != kronEdgeMiss && IsObsEdge(NId1, NId2)) { continue; } if (! Graph->IsEdge(NId1, NId2)) { Graph->AddEdge(NId1, NId2); if(NId1 != NId2) { GEdgeV.Add(TIntTr(NId1, NId2, LEdgeV.Len())); } else { LSelfEdge++; } LEdgeV.Add(TIntTr(NId1, NId2, GEdgeV.Len()-1)); added++; if (! isDir) { if (NId1 != NId2) { Graph->AddEdge(NId2, NId1); GEdgeV.Add(TIntTr(NId2, NId1, LEdgeV.Len())); LEdgeV.Add(TIntTr(NId2, NId1, GEdgeV.Len()-1)); added++; } } } else { collision ++; } } // printf("total = %d / added = %d / collision = %d\n", count, added, collision); }
void TKroneckerLL::SetRndPerm | ( | ) |
double TKroneckerLL::SwapNodesLL | ( | const int & | NId1, |
const int & | NId2 | ||
) |
Definition at line 1083 of file kronecker.cpp.
{ // subtract old LL (remove nodes) LogLike = LogLike - NodeLLDelta(NId1) - NodeLLDelta(NId2); const int PrevId1 = NodePerm[NId1], PrevId2 = NodePerm[NId2]; // double-counted edges if (Graph->IsEdge(NId1, NId2)) { LogLike += - LLMtx.GetApxNoEdgeLL(PrevId1, PrevId2, KronIters) + LLMtx.GetEdgeLL(PrevId1, PrevId2, KronIters); } if (Graph->IsEdge(NId2, NId1)) { LogLike += - LLMtx.GetApxNoEdgeLL(PrevId2, PrevId1, KronIters) + LLMtx.GetEdgeLL(PrevId2, PrevId1, KronIters); } // swap NodePerm.Swap(NId1, NId2); InvertPerm.Swap(NodePerm[NId1], NodePerm[NId2]); // add new LL (add nodes) LogLike = LogLike + NodeLLDelta(NId1) + NodeLLDelta(NId2); const int NewId1 = NodePerm[NId1], NewId2 = NodePerm[NId2]; // correct for double-counted edges if (Graph->IsEdge(NId1, NId2)) { LogLike += + LLMtx.GetApxNoEdgeLL(NewId1, NewId2, KronIters) - LLMtx.GetEdgeLL(NewId1, NewId2, KronIters); } if (Graph->IsEdge(NId2, NId1)) { LogLike += + LLMtx.GetApxNoEdgeLL(NewId2, NewId1, KronIters) - LLMtx.GetEdgeLL(NewId2, NewId1, KronIters); } return LogLike; }
void TKroneckerLL::TestBicCriterion | ( | const TStr & | OutFNm, |
const TStr & | Desc1, | ||
const PNGraph & | G, | ||
const int & | GradIters, | ||
double | LearnRate, | ||
const int & | WarmUp, | ||
const int & | NSamples, | ||
const int & | TrueN0 | ||
) | [static] |
Definition at line 2109 of file kronecker.cpp.
{ TFltPrV BicV, MdlV, LLV; const double rndGP = G->GetEdges()/TMath::Sqr(double(G->GetNodes())); const double RndGLL = G->GetEdges()*log(rndGP )+ (TMath::Sqr(double(G->GetNodes()))-G->GetEdges())*log(1-rndGP); LLV.Add(TFltPr(1, RndGLL)); BicV.Add(TFltPr(1, -RndGLL + 0.5*TMath::Sqr(1)*log(TMath::Sqr(G->GetNodes())))); MdlV.Add(TFltPr(1, -RndGLL + 32*TMath::Sqr(1)+2*(log((double)1)+log((double)G->GetNodes())))); for (int NZero = 2; NZero < 10; NZero++) { const TKronMtx InitKronMtx = TKronMtx::GetInitMtx(NZero, G->GetNodes(), G->GetEdges()); InitKronMtx.Dump("INIT PARAM", true); TKroneckerLL KronLL(G, InitKronMtx); KronLL.SetPerm('d'); // degree perm const double LastLL = KronLL.GradDescent(GradIters, LearnRate, 0.001, 0.01, WarmUp, NSamples); LLV.Add(TFltPr(NZero, LastLL)); BicV.Add(TFltPr(NZero, -LastLL + 0.5*TMath::Sqr(NZero)*log(TMath::Sqr(G->GetNodes())))); MdlV.Add(TFltPr(NZero, -LastLL + 32*TMath::Sqr(NZero)+2*(log((double)NZero)+log((double)KronLL.GetKronIters())))); { TGnuPlot GP("LL-"+OutFNm, Desc1); GP.AddPlot(LLV, gpwLinesPoints, "Log-likelihood", "linewidth 1 pointtype 6 pointsize 2"); GP.SetXYLabel("NZero", "Log-Likelihood"); GP.SavePng(); } { TGnuPlot GP("BIC-"+OutFNm, Desc1); GP.AddPlot(BicV, gpwLinesPoints, "BIC", "linewidth 1 pointtype 6 pointsize 2"); GP.SetXYLabel("NZero", "BIC"); GP.SavePng(); } { TGnuPlot GP("MDL-"+OutFNm, Desc1); GP.AddPlot(MdlV, gpwLinesPoints, "MDL", "linewidth 1 pointtype 6 pointsize 2"); GP.SetXYLabel("NZero", "MDL"); GP.SavePng(); } } }
void TKroneckerLL::TestGradDescent | ( | const int & | KronIters, |
const int & | KiloSamples, | ||
const TStr & | Permutation | ||
) | [static] |
Definition at line 2138 of file kronecker.cpp.
{ const TStr OutFNm = TStr::Fmt("grad-%s%d-%dk", Permutation.CStr(), KronIters, KiloSamples); TKronMtx KronParam = TKronMtx::GetMtx("0.8 0.6; 0.6 0.4"); PNGraph Graph = TKronMtx::GenFastKronecker(KronParam, KronIters, true, 0); TKroneckerLL KronLL(Graph, KronParam); TVec<TFltV> GradVV(4), SDevVV(4); TFltV XValV; int NId1 = 0, NId2 = 0, NAccept = 0; TVec<TMom> GradMomV(4); TExeTm ExeTm; if (Permutation == "r") KronLL.SetRndPerm(); else if (Permutation == "d") KronLL.SetDegPerm(); else if (Permutation == "o") KronLL.SetOrderPerm(); else FailR("Unknown permutation (r,d,o)"); KronLL.CalcApxGraphLL(); KronLL.CalcApxGraphDLL(); for (int s = 0; s < 1000*KiloSamples; s++) { if (KronLL.SampleNextPerm(NId1, NId2)) { // new permutation KronLL.UpdateGraphDLL(NId1, NId2); NAccept++; } if (s > 50000) { //warm up period for (int m = 0; m < 4; m++) { GradVV[m].Add(KronLL.GradV[m]); } if ((s+1) % 1000 == 0) { printf("."); for (int m = 0; m < 4; m++) { GradVV[m].Add(KronLL.GradV[m]); } XValV.Add((s+1)); if ((s+1) % 100000 == 0) { TGnuPlot GP(OutFNm, TStr::Fmt("Gradient vs. samples. %d nodes, %d edges", Graph->GetNodes(), Graph->GetEdges()), true); for (int g = 0; g < GradVV.Len(); g++) { GP.AddPlot(XValV, GradVV[g], gpwLines, TStr::Fmt("grad %d", g)); } GP.SetXYLabel("sample index","log Gradient"); GP.SavePng(); } } } } printf("\n"); for (int m = 0; m < 4; m++) { GradMomV[m].Def(); printf("grad %d: mean: %12f sDev: %12f median: %12f\n", m, GradMomV[m].GetMean(), GradMomV[m].GetSDev(), GradMomV[m].GetMedian()); } }
TFltQu TKroneckerLL::TestKronDescent | ( | const bool & | DoExact, |
const bool & | TruePerm, | ||
double | LearnRate, | ||
const int & | WarmUp, | ||
const int & | NSamples, | ||
const TKronMtx & | TrueParam | ||
) |
Definition at line 1942 of file kronecker.cpp.
{ printf("Test gradient descent on a synthetic kronecker graphs:\n"); if (DoExact) { printf(" -- Exact gradient calculations\n"); } else { printf(" -- Approximate gradient calculations\n"); } if (TruePerm) { printf(" -- No permutation sampling (use true permutation)\n"); } else { printf(" -- Sample permutations (start with degree permutation)\n"); } TExeTm IterTm; int Iter; double OldLL=0, MyLL=0, AvgAbsErr, AbsSumErr; TFltV MyGradV, SDevV; TFltV LearnRateV(GetParams()); LearnRateV.PutAll(LearnRate); if (TruePerm) { SetOrderPerm(); } else { /*printf("SET EIGEN VECTOR PERMUTATIONS\n"); TFltV LeftSV, RightSV; TGSvd::GetSngVec(Graph, LeftSV, RightSV); TFltIntPrV V; for (int v=0; v<LeftSV.Len();v++) { V.Add(TFltIntPr(LeftSV[v], v)); } V.Sort(false); NodePerm.Gen(Nodes, 0); for (int v=0; v < V.Len();v++) { NodePerm.Add(V[v].Val2); } //*/ //printf("RANDOM PERMUTATION\n"); SetRndPerm(); printf("DEGREE PERMUTATION\n"); SetDegPerm(); } for (Iter = 0; Iter < 100; Iter++) { if (TruePerm) { // don't sample over permutations if (DoExact) { CalcGraphDLL(); CalcGraphLL(); } // slow, O(N^2) else { CalcApxGraphDLL(); CalcApxGraphLL(); } // fast MyLL = LogLike; MyGradV = GradV; } else { printf("."); // sample over permutations (approximate calculations) SampleGradient(WarmUp, NSamples, MyLL, MyGradV); } printf("%d] LL: %g, ", Iter, MyLL); AvgAbsErr = TKronMtx::GetAvgAbsErr(ProbMtx, TrueParam); AbsSumErr = fabs(ProbMtx.GetMtxSum() - TrueParam.GetMtxSum()); printf(" avgAbsErr: %.4f, absSumErr: %.4f, newLL: %.2f, deltaLL: %.2f\n", AvgAbsErr, AbsSumErr, MyLL, OldLL-MyLL); for (int p = 0; p < GetParams(); p++) { // set learn rate so that move for each parameter is inside the [0.01, 0.1] LearnRateV[p] *= 0.9; //printf("%d: rate: %f delta:%f\n", p, LearnRateV[p], fabs(LearnRateV[p]*MyGradV[p])); while (fabs(LearnRateV[p]*MyGradV[p]) > 0.1) { LearnRateV[p] *= 0.9; } //printf(" rate: %f delta:%f\n", LearnRateV[p], fabs(LearnRateV[p]*MyGradV[p])); while (fabs(LearnRateV[p]*MyGradV[p]) < 0.001) { LearnRateV[p] *= (1.0/0.9); } //printf(" rate: %f delta:%f\n", LearnRateV[p], fabs(LearnRateV[p]*MyGradV[p])); printf(" %d] %f <-- %f + %f lrnRate:%g\n", p, ProbMtx.At(p) + LearnRateV[p]*MyGradV[p], ProbMtx.At(p), (double)(LearnRateV[p]*MyGradV[p]), LearnRateV[p]()); ProbMtx.At(p) = ProbMtx.At(p) + LearnRateV[p]*MyGradV[p]; // box constraints if (ProbMtx.At(p) > 0.99) { ProbMtx.At(p)=0.99; } if (ProbMtx.At(p) < 0.01) { ProbMtx.At(p)=0.01; } } ProbMtx.GetLLMtx(LLMtx); OldLL = MyLL; if (AvgAbsErr < 0.01) { printf("***CONVERGED!\n"); break; } printf("\n"); fflush(stdout); } TrueParam.Dump("True Thetas", true); ProbMtx.Dump("Final Thetas", true); printf(" AvgAbsErr: %f\n AbsSumErr: %f\n Iterations: %d\n", AvgAbsErr, AbsSumErr, Iter); printf("Iteration run time: %s, sec: %g\n\n", IterTm.GetTmStr(), IterTm.GetSecs()); return TFltQu(AvgAbsErr, AbsSumErr, Iter, IterTm.GetSecs()); }
TFltV TKroneckerLL::TestSamplePerm | ( | const TStr & | OutFNm, |
const int & | WarmUp, | ||
const int & | NSamples, | ||
const TKronMtx & | TrueMtx, | ||
const bool & | DoPlot = true |
||
) |
Definition at line 1795 of file kronecker.cpp.
{ printf("Sample permutations: %s (warm-up: %s)\n", TInt::GetMegaStr(NSamples).CStr(), TInt::GetMegaStr(WarmUp).CStr()); int NId1=0, NId2=0, NAccept=0; TExeTm ExeTm; const int PlotLen = NSamples/1000+1; double TrueLL=-1, AvgLL=0.0; TFltV AvgGradV(GetParams()); TFltPrV TrueLLV(PlotLen, 0); // true log-likelihood (under the correct permutation) TFltPrV EstLLV(PlotLen, 0); // estiamted log-likelihood (averaged over last 1k permutation) TFltPrV AcceptV; // sample acceptance ratio TFltV SampleLLV(NSamples, 0); TVec<TFltPrV> GradVV(GetParams()); for (int g = 0; g < GetParams(); g++) { GradVV[g].Gen(PlotLen, 0); } if (! TrueMtx.Empty()) { TIntV PermV=NodePerm; TKronMtx CurMtx=ProbMtx; ProbMtx.Dump(); InitLL(TrueMtx); SetOrderPerm(); CalcApxGraphLL(); printf("TrueLL: %f\n", LogLike()); TrueLL=LogLike; InitLL(CurMtx); NodePerm=PermV; } CalcApxGraphLL(); printf("LogLike at start: %f\n", LogLike()); if (WarmUp > 0) { EstLLV.Add(TFltPr(0, LogLike)); if (TrueLL != -1) { TrueLLV.Add(TFltPr(0, TrueLL)); } for (int s = 0; s < WarmUp; s++) { SampleNextPerm(NId1, NId2); } printf(" warm-up:%s,", ExeTm.GetTmStr()); ExeTm.Tick(); } printf("LogLike afterm warm-up: %f\n", LogLike()); CalcApxGraphLL(); // re-calculate LL (due to numerical errors) CalcApxGraphDLL(); EstLLV.Add(TFltPr(WarmUp, LogLike)); if (TrueLL != -1) { TrueLLV.Add(TFltPr(WarmUp, TrueLL)); } printf(" recalculated: %f\n", LogLike()); // start sampling printf(" sampling (average per 1000 samples)\n"); TVec<TFltV> SamplVV(5); for (int s = 0; s < NSamples; s++) { if (SampleNextPerm(NId1, NId2)) { // new permutation UpdateGraphDLL(NId1, NId2); NAccept++; } for (int m = 0; m < AvgGradV.Len(); m++) { AvgGradV[m] += GradV[m]; } AvgLL += GetLL(); SampleLLV.Add(GetLL()); /*SamplVV[0].Add(GetLL()); // gives worse autocoreelation than the avg below SamplVV[1].Add(GradV[0]); SamplVV[2].Add(GradV[1]); SamplVV[3].Add(GradV[2]); SamplVV[4].Add(GradV[3]);*/ if (s > 0 && s % 1000 == 0) { printf("."); for (int g = 0; g < AvgGradV.Len(); g++) { GradVV[g].Add(TFltPr(WarmUp+s, AvgGradV[g] / 1000.0)); } EstLLV.Add(TFltPr(WarmUp+s, AvgLL / 1000.0)); if (TrueLL != -1) { TrueLLV.Add(TFltPr(WarmUp+s, TrueLL)); } AcceptV.Add(TFltPr(WarmUp+s, NAccept/1000.0)); // better (faster decaying) autocorrelation when one takes avg. of 1000 consecutive samples /*SamplVV[0].Add(AvgLL); SamplVV[1].Add(AvgGradV[0]); SamplVV[2].Add(AvgGradV[1]); SamplVV[3].Add(AvgGradV[2]); SamplVV[4].Add(AvgGradV[3]); //*/ if (s % 100000 == 0 && DoPlot) { const TStr Desc = TStr::Fmt("P(NodeSwap)=%g. Nodes: %d, Edges: %d, Params: %d, WarmUp: %s, Samples: %s", PermSwapNodeProb(), Graph->GetNodes(), Graph->GetEdges(), GetParams(), TInt::GetMegaStr(WarmUp).CStr(), TInt::GetMegaStr(NSamples).CStr()); PlotGrad(EstLLV, TrueLLV, GradVV, AcceptV, OutFNm, Desc); for (int n = 0; n < SamplVV.Len(); n++) { PlotAutoCorrelation(SamplVV[n], 1000, TStr::Fmt("%s-n%d", OutFNm.CStr(), n), Desc); } printf(" samples: %d, time: %s, samples/s: %.1f\n", s, ExeTm.GetTmStr(), double(s+1)/ExeTm.GetSecs()); } AvgLL = 0; AvgGradV.PutAll(0); NAccept=0; } } if (DoPlot) { const TStr Desc = TStr::Fmt("P(NodeSwap)=%g. Nodes: %d, Edges: %d, Params: %d, WarmUp: %s, Samples: %s", PermSwapNodeProb(), Graph->GetNodes(), Graph->GetEdges(), GetParams(), TInt::GetMegaStr(WarmUp).CStr(), TInt::GetMegaStr(NSamples).CStr()); PlotGrad(EstLLV, TrueLLV, GradVV, AcceptV, OutFNm, Desc); for (int n = 0; n < SamplVV.Len(); n++) { PlotAutoCorrelation(SamplVV[n], 1000, TStr::Fmt("%s-n%d", OutFNm.CStr(), n), Desc); } } return SampleLLV; // seems to work better for potential scale reduction plot }
void TKroneckerLL::UpdateGraphDLL | ( | const int & | SwapNId1, |
const int & | SwapNId2 | ||
) |
Definition at line 1241 of file kronecker.cpp.
{ for (int ParamId = 0; ParamId < LLMtx.Len(); ParamId++) { // permutation before the swap (swap back to previous position) NodePerm.Swap(SwapNId1, SwapNId2); // subtract old DLL TFlt& DLL = GradV[ParamId]; DLL = DLL - NodeDLLDelta(ParamId, SwapNId1) - NodeDLLDelta(ParamId, SwapNId2); // double-counted edges const int PrevId1 = NodePerm[SwapNId1], PrevId2 = NodePerm[SwapNId2]; if (Graph->IsEdge(SwapNId1, SwapNId2)) { DLL += - LLMtx.GetApxNoEdgeDLL(ParamId, PrevId1, PrevId2, KronIters) + LLMtx.GetEdgeDLL(ParamId, PrevId1, PrevId2, KronIters); } if (Graph->IsEdge(SwapNId2, SwapNId1)) { DLL += - LLMtx.GetApxNoEdgeDLL(ParamId, PrevId2, PrevId1, KronIters) + LLMtx.GetEdgeDLL(ParamId, PrevId2, PrevId1, KronIters); } // permutation after the swap (restore the swap) NodePerm.Swap(SwapNId1, SwapNId2); // add new DLL DLL = DLL + NodeDLLDelta(ParamId, SwapNId1) + NodeDLLDelta(ParamId, SwapNId2); const int NewId1 = NodePerm[SwapNId1], NewId2 = NodePerm[SwapNId2]; // double-counted edges if (Graph->IsEdge(SwapNId1, SwapNId2)) { DLL += + LLMtx.GetApxNoEdgeDLL(ParamId, NewId1, NewId2, KronIters) - LLMtx.GetEdgeDLL(ParamId, NewId1, NewId2, KronIters); } if (Graph->IsEdge(SwapNId2, SwapNId1)) { DLL += + LLMtx.GetApxNoEdgeDLL(ParamId, NewId2, NewId1, KronIters) - LLMtx.GetEdgeDLL(ParamId, NewId2, NewId1, KronIters); } } }
friend class TPt< TKroneckerLL > [friend] |
Definition at line 245 of file kronecker.h.
TCRef TKroneckerLL::CRef [private] |
Definition at line 119 of file kronecker.h.
TBool TKroneckerLL::DebugMode [private] |
Definition at line 141 of file kronecker.h.
TKronEMType TKroneckerLL::EMType [private] |
Definition at line 138 of file kronecker.h.
TIntTrV TKroneckerLL::GEdgeV [private] |
Definition at line 125 of file kronecker.h.
TFltV TKroneckerLL::GradV [private] |
Definition at line 136 of file kronecker.h.
PNGraph TKroneckerLL::Graph [private] |
Definition at line 120 of file kronecker.h.
TIntV TKroneckerLL::InvertPerm [private] |
Definition at line 129 of file kronecker.h.
TInt TKroneckerLL::KronIters [private] |
Definition at line 121 of file kronecker.h.
TIntTrV TKroneckerLL::LEdgeV [private] |
Definition at line 126 of file kronecker.h.
TKronMtx TKroneckerLL::LLMtx [private] |
Definition at line 134 of file kronecker.h.
TFltV TKroneckerLL::LLV [private] |
Definition at line 142 of file kronecker.h.
TFlt TKroneckerLL::LogLike [private] |
Definition at line 135 of file kronecker.h.
TInt TKroneckerLL::LSelfEdge [private] |
Definition at line 127 of file kronecker.h.
TInt TKroneckerLL::MissEdges [private] |
Definition at line 139 of file kronecker.h.
TVec<TKronMtx> TKroneckerLL::MtxV [private] |
Definition at line 143 of file kronecker.h.
TIntV TKroneckerLL::NodePerm [private] |
Definition at line 128 of file kronecker.h.
TInt TKroneckerLL::Nodes [private] |
Definition at line 121 of file kronecker.h.
TFlt TKroneckerLL::PermSwapNodeProb [private] |
Definition at line 123 of file kronecker.h.
TKronMtx TKroneckerLL::ProbMtx [private] |
Definition at line 134 of file kronecker.h.
TInt TKroneckerLL::RealEdges [private] |
Definition at line 132 of file kronecker.h.
TInt TKroneckerLL::RealNodes [private] |
Definition at line 131 of file kronecker.h.