SNAP Library , User Reference
2013-01-07 14:03:36
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
#include <kronecker.h>
Public Member Functions | |
TKronMomentsFit (const PUNGraph &G) | |
TFltQu | EstABC (const int &R) |
Static Public Member Functions | |
static void | Test () |
Public Attributes | |
double | Edges |
double | Hairpins |
double | Tripins |
double | Triads |
Definition at line 303 of file kronecker.h.
TKronMomentsFit::TKronMomentsFit | ( | const PUNGraph & | G | ) | [inline] |
Definition at line 307 of file kronecker.h.
{ Edges=0; Hairpins=0; Tripins=0; Triads=0; for (TUNGraph::TNodeI NI = G->BegNI(); NI < G->EndNI(); NI++) { const int d = NI.GetOutDeg(); Edges += d; Hairpins += d*(d-1.0); Tripins += d*(d-1.0)*(d-2.0); } Edges /= 2.0; Hairpins /= 2.0; Tripins /= 6.0; int ot,ct; Triads = TSnap::GetTriads(G, ot, ct)/3.0; printf("E:%g\tH:%g\tT:%g\tD:%g\n", Edges, Hairpins, Tripins, Triads); }
TFltQu TKronMomentsFit::EstABC | ( | const int & | R | ) | [inline] |
Definition at line 323 of file kronecker.h.
{ const double Step = 0.01; double MinScore=TFlt::Mx; double A=0, B=0, C=0; //Edges=log(Edges); Hairpins=log(Hairpins); Tripins=log(Tripins); Triads=log(Triads); for (double a = 1.0; a > Step; a-=Step) { for (double b = Step; b <= 1.0; b+=Step) { for (double c = Step; c <= a; c+=Step) { double EE = ( pow(a+2*b+c, R) - pow(a+c, R) ) / 2.0; double EH = ( pow(pow(a+b,2) + pow(b+c,2), R) -2*pow(a*(a+b)+c*(c+b), R) -pow(a*a + 2*b*b + c*c, R) +2*pow(a*a + c*c, R) ) / 2.0; double ET = ( pow(pow(a+b,3)+pow(b+c,3), R) -3*pow(a*pow(a+b,2)+c*pow(b+c,2), R) -3*pow(a*a*a + c*c*c + b*(a*a+c*c) + b*b*(a+c) + 2*b*b*b ,R) +2*pow(a*a*a + 2*b*b*b + c*c*c, R) +5*pow(a*a*a + c*c*c + b*b*(a+c), R) +4*pow(a*a*a + c*c*c + b*(a*a+c*c), R) -6*pow(a*a*a + c*c*c, R) ) / 6.0; double ED = ( pow(a*a*a + 3*b*b*(a+c) + c*c*c, R) -3*pow(a*(a*a+b*b) + c*(b*b+c*c), R) +2*pow(a*a*a+c*c*c, R) ) / 6.0; if (EE < 0) { EE = 1; } if (EH < 0) { EH = 1; } if (ET < 0) { ET = 1; } if (ED < 0) { ED = 1; } //EE=log(EE); EH=log(EH); ET=log(ET); ED=log(ED); double Score = pow(Edges-EE,2)/EE + pow(Hairpins-EH ,2)/EH + pow(Tripins-ET, 2)/ET + pow(Triads-ED, 2)/ED; //double Score = fabs(Edges-EE)/EE + fabs(Hairpins-EH)/EH + fabs(Tripins-ET)/ET + fabs(Triads-ED)/ED; //double Score = log(pow(Edges-EE,2)/EE) + log(pow(Hairpins-EH,2)/EH) + log(pow(Tripins-ET, 2)/ET) + log(pow(Triads-ED, 2)/ED); if (MinScore > Score || (a==0.9 && b==0.6 && c==0.2) || (TMath::IsInEps(a-0.99,1e-6) && TMath::IsInEps(b-0.57,1e-6) && TMath::IsInEps(c-0.05,1e-6))) { printf("%.03f %.03f %0.03f %10.4f %10.10g\t%10.10g\t%10.10g\t%10.10g\n", a,b,c, log10(Score), EE, EH, ET, ED); //printf("%.03f %.03f %0.03f %g\n", a,b,c, log(Score)); A=a; B=b; C=c; MinScore=Score; } } } } printf("\t\t\t %10.10g\t%10.10g\t%10.10g\t%10.10g\n", Edges, Hairpins, Tripins, Triads); return TFltQu(A,B,C,MinScore); }
static void TKronMomentsFit::Test | ( | ) | [inline, static] |
Definition at line 367 of file kronecker.h.
{ TFIn FIn("as20.ngraph"); PUNGraph G = TSnap::ConvertGraph<PUNGraph>(TNGraph::Load(FIn)); //PUNGraph G = TKronMtx::GenFastKronecker(TKronMtx::GetMtx("0.9, 0.6; 0.6, 0.2"), 14, false, 0)->GetUNGraph(); //PUNGraph G = TUNGraph::GetSmallGraph(); TSnap::PrintInfo(G); TSnap::DelSelfEdges(G); TSnap::PrintInfo(G); TKronMomentsFit Fit(G); printf("iter %d\n", TKronMtx::GetKronIter(G->GetNodes(), 2)); Fit.EstABC(TKronMtx::GetKronIter(G->GetNodes(), 2)); //*/ }
double TKronMomentsFit::Edges |
Definition at line 305 of file kronecker.h.
double TKronMomentsFit::Hairpins |
Definition at line 305 of file kronecker.h.
double TKronMomentsFit::Triads |
Definition at line 305 of file kronecker.h.
double TKronMomentsFit::Tripins |
Definition at line 305 of file kronecker.h.