SNAP Library , User Reference
2013-01-07 14:03:36
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
00001 00002 // forward declarations 00003 class TLinAlg; 00004 class TLAMisc; 00005 00007 // Matrix 00008 class TMatrix { 00009 private: 00010 bool Transposed; 00011 protected: 00012 virtual void PMultiply(const TFltVV& B, int ColId, TFltV& Result) const = 0; 00013 virtual void PMultiply(const TFltV& Vec, TFltV& Result) const = 0; 00014 virtual void PMultiplyT(const TFltVV& B, int ColId, TFltV& Result) const = 0; 00015 virtual void PMultiplyT(const TFltV& Vec, TFltV& Result) const = 0; 00016 00017 virtual int PGetRows() const = 0; 00018 virtual int PGetCols() const = 0; 00019 public: 00020 TMatrix(): Transposed(false) {} 00021 virtual ~TMatrix() { } 00022 00023 // Result = A * B(:,ColId) 00024 void Multiply(const TFltVV& B, int ColId, TFltV& Result) const { 00025 if (Transposed) { PMultiplyT(B, ColId, Result); } 00026 else { PMultiply(B, ColId, Result); } 00027 } 00028 // Result = A * Vec 00029 void Multiply(const TFltV& Vec, TFltV& Result) const { 00030 if (Transposed) { PMultiplyT(Vec, Result); } 00031 else { PMultiply(Vec, Result); } 00032 } 00033 // Result = A' * B(:,ColId) 00034 void MultiplyT(const TFltVV& B, int ColId, TFltV& Result) const { 00035 if (Transposed) { PMultiply(B, ColId, Result); } 00036 else { PMultiplyT(B, ColId, Result); } 00037 } 00038 // Result = A' * Vec 00039 void MultiplyT(const TFltV& Vec, TFltV& Result) const{ 00040 if (Transposed) { PMultiply(Vec, Result); } 00041 else { PMultiplyT(Vec, Result); } 00042 } 00043 00044 // number of rows 00045 int GetRows() const { return Transposed ? PGetCols() : PGetRows(); } 00046 // number of columns 00047 int GetCols() const { return Transposed ? PGetRows() : PGetCols(); } 00048 00049 void Transpose() { Transposed = !Transposed; } 00050 }; 00051 00053 // Sparse-Column-Matrix 00054 // matrix is given with columns as sparse vectors 00055 class TSparseColMatrix: public TMatrix { 00056 public: 00057 // number of rows and columns of matrix 00058 int RowN, ColN; 00059 // vector of sparse columns 00060 TVec<TIntFltKdV> ColSpVV; 00061 protected: 00062 // Result = A * B(:,ColId) 00063 virtual void PMultiply(const TFltVV& B, int ColId, TFltV& Result) const; 00064 // Result = A * Vec 00065 virtual void PMultiply(const TFltV& Vec, TFltV& Result) const; 00066 // Result = A' * B(:,ColId) 00067 virtual void PMultiplyT(const TFltVV& B, int ColId, TFltV& Result) const; 00068 // Result = A' * Vec 00069 virtual void PMultiplyT(const TFltV& Vec, TFltV& Result) const; 00070 00071 int PGetRows() const { return RowN; } 00072 int PGetCols() const { return ColN; } 00073 00074 public: 00075 TSparseColMatrix(): TMatrix() {} 00076 TSparseColMatrix(TVec<TIntFltKdV> _ColSpVV): TMatrix(), ColSpVV(_ColSpVV) {} 00077 TSparseColMatrix(TVec<TIntFltKdV> _ColSpVV, const int& _RowN, const int& _ColN): 00078 TMatrix(), RowN(_RowN), ColN(_ColN), ColSpVV(_ColSpVV) {} 00079 // loads Matlab sparse matrix format: row, column, value. 00080 // Indexes start with 1. 00081 void Save(TSOut& SOut) { 00082 SOut.Save(RowN); SOut.Save(ColN); ColSpVV.Save(SOut); } 00083 void Load(TSIn& SIn) { 00084 SIn.Load(RowN); SIn.Load(ColN); ColSpVV = TVec<TIntFltKdV>(SIn); } 00085 }; 00086 00088 // Sparse-Row-Matrix 00089 // matrix is given with rows as sparse vectors 00090 class TSparseRowMatrix: public TMatrix { 00091 public: 00092 // number of rows and columns of matrix 00093 int RowN, ColN; 00094 // vector of sparse rows 00095 TVec<TIntFltKdV> RowSpVV; 00096 protected: 00097 // Result = A * B(:,ColId) 00098 virtual void PMultiply(const TFltVV& B, int ColId, TFltV& Result) const; 00099 // Result = A * Vec 00100 virtual void PMultiply(const TFltV& Vec, TFltV& Result) const; 00101 // Result = A' * B(:,ColId) 00102 virtual void PMultiplyT(const TFltVV& B, int ColId, TFltV& Result) const; 00103 // Result = A' * Vec 00104 virtual void PMultiplyT(const TFltV& Vec, TFltV& Result) const; 00105 00106 int PGetRows() const { return RowN; } 00107 int PGetCols() const { return ColN; } 00108 00109 public: 00110 TSparseRowMatrix(): TMatrix() {} 00111 TSparseRowMatrix(TVec<TIntFltKdV> _RowSpVV): TMatrix(), RowSpVV(_RowSpVV) {} 00112 TSparseRowMatrix(TVec<TIntFltKdV> _RowSpVV, const int& _RowN, const int& _ColN): 00113 TMatrix(), RowN(_RowN), ColN(_ColN), RowSpVV(_RowSpVV) {} 00114 // loads Matlab sparse matrix format: row, column, value. 00115 // Indexes start with 1. 00116 TSparseRowMatrix(const TStr& MatlabMatrixFNm); 00117 void Save(TSOut& SOut) { 00118 SOut.Save(RowN); SOut.Save(ColN); RowSpVV.Save(SOut); } 00119 void Load(TSIn& SIn) { 00120 SIn.Load(RowN); SIn.Load(ColN); RowSpVV = TVec<TIntFltKdV>(SIn); } 00121 }; 00122 00124 // Full-Col-Matrix 00125 // matrix is given with columns of full vectors 00126 class TFullColMatrix: public TMatrix { 00127 public: 00128 // number of rows and columns of matrix 00129 int RowN, ColN; 00130 // vector of sparse columns 00131 TVec<TFltV> ColV; 00132 protected: 00133 // Result = A * B(:,ColId) 00134 virtual void PMultiply(const TFltVV& B, int ColId, TFltV& Result) const; 00135 // Result = A * Vec 00136 virtual void PMultiply(const TFltV& Vec, TFltV& Result) const; 00137 // Result = A' * B(:,ColId) 00138 virtual void PMultiplyT(const TFltVV& B, int ColId, TFltV& Result) const; 00139 // Result = A' * Vec 00140 virtual void PMultiplyT(const TFltV& Vec, TFltV& Result) const; 00141 00142 int PGetRows() const { return RowN; } 00143 int PGetCols() const { return ColN; } 00144 00145 public: 00146 TFullColMatrix(): TMatrix() {} 00147 // loads matrix saved in matlab with command: 00148 // save -ascii Matrix.dat M 00149 TFullColMatrix(const TStr& MatlabMatrixFNm); 00150 void Save(TSOut& SOut) { ColV.Save(SOut); } 00151 void Load(TSIn& SIn) { ColV.Load(SIn); } 00152 }; 00153 00155 // Basic Linear Algebra Operations 00156 class TLinAlg { 00157 public: 00158 // <x,y> 00159 static double DotProduct(const TFltV& x, const TFltV& y); 00160 // <X(:,ColIdX), Y(:,ColIdY)> 00161 static double DotProduct(const TFltVV& X, int ColIdX, const TFltVV& Y, int ColIdY); 00162 // <X(:,ColId), Vec> 00163 static double DotProduct(const TFltVV& X, int ColId, const TFltV& Vec); 00164 // sparse dot products: 00165 // <x,y> where x AND y are sparse 00166 static double DotProduct(const TIntFltKdV& x, const TIntFltKdV& y); 00167 // <x,y> where only y is sparse 00168 static double DotProduct(const TFltV& x, const TIntFltKdV& y); 00169 // <X(:,ColId),y> where only y is sparse 00170 static double DotProduct(const TFltVV& X, int ColId, const TIntFltKdV& y); 00171 00172 // z := p * x + q * y 00173 static void LinComb(const double& p, const TFltV& x, 00174 const double& q, const TFltV& y, TFltV& z); 00175 // z := p * x + (1 - p) * y 00176 static void ConvexComb(const double& p, const TFltV& x, const TFltV& y, TFltV& z); 00177 00178 // z := k * x + y 00179 static void AddVec(const double& k, const TFltV& x, const TFltV& y, TFltV& z); 00180 // z := k * x + y 00181 static void AddVec(const double& k, const TIntFltKdV& x, const TFltV& y, TFltV& z); 00182 // y := k * x + y 00183 static void AddVec(const double& k, const TIntFltKdV& x, TFltV& y); 00184 // Y(:,Col) += k * X(:,Col) 00185 static void AddVec(double k, const TFltVV& X, int ColIdX, TFltVV& Y, int ColIdY); 00186 // Result += k * X(:,Col) 00187 static void AddVec(double k, const TFltVV& X, int ColId, TFltV& Result); 00188 // z = x + y 00189 static void AddVec(const TIntFltKdV& x, const TIntFltKdV& y, TIntFltKdV& z); 00190 00191 // Result = SUM(x) 00192 static double SumVec(const TFltV& x); 00193 // Result = SUM(k*x + y) 00194 static double SumVec(double k, const TFltV& x, const TFltV& y); 00195 00196 // Result = ||x-y||^2 (Euclidian) 00197 static double EuclDist2(const TFltV& x, const TFltV& y); 00198 // Result = ||x-y|| (Euclidian) 00199 static double EuclDist(const TFltV& x, const TFltV& y); 00200 00201 // ||x||^2 (Euclidian) 00202 static double Norm2(const TFltV& x); 00203 // ||x|| (Euclidian) 00204 static double Norm(const TFltV& x); 00205 // x := x / ||x|| 00206 static void Normalize(TFltV& x); 00207 00208 // ||x||^2 (Euclidian), x is sparse 00209 static double Norm2(const TIntFltKdV& x); 00210 // ||x|| (Euclidian), x is sparse 00211 static double Norm(const TIntFltKdV& x); 00212 // x := x / ||x||, x is sparse 00213 static void Normalize(TIntFltKdV& x); 00214 00215 // ||X(:,ColId)||^2 (Euclidian) 00216 static double Norm2(const TFltVV& X, int ColId); 00217 // ||X(:,ColId)|| (Euclidian) 00218 static double Norm(const TFltVV& X, int ColId); 00219 00220 // L1 norm of x (Sum[|xi|, i = 1..n]) 00221 static double NormL1(const TFltV& x); 00222 // L1 norm of k*x+y (Sum[|k*xi+yi|, i = 1..n]) 00223 static double NormL1(double k, const TFltV& x, const TFltV& y); 00224 // L1 norm of x (Sum[|xi|, i = 1..n]) 00225 static double NormL1(const TIntFltKdV& x); 00226 // x := x / ||x||_inf 00227 static void NormalizeL1(TFltV& x); 00228 // x := x / ||x||_inf 00229 static void NormalizeL1(TIntFltKdV& x); 00230 00231 // Linf norm of x (Max{|xi|, i = 1..n}) 00232 static double NormLinf(const TFltV& x); 00233 // Linf norm of x (Max{|xi|, i = 1..n}) 00234 static double NormLinf(const TIntFltKdV& x); 00235 // x := x / ||x||_inf 00236 static void NormalizeLinf(TFltV& x); 00237 // x := x / ||x||_inf, , x is sparse 00238 static void NormalizeLinf(TIntFltKdV& x); 00239 00240 // y := k * x 00241 static void MultiplyScalar(const double& k, const TFltV& x, TFltV& y); 00242 // y := k * x 00243 static void MultiplyScalar(const double& k, const TIntFltKdV& x, TIntFltKdV& y); 00244 00245 // y := A * x 00246 static void Multiply(const TFltVV& A, const TFltV& x, TFltV& y); 00247 // C(:, ColId) := A * x 00248 static void Multiply(const TFltVV& A, const TFltV& x, TFltVV& C, int ColId); 00249 // y := A * B(:, ColId) 00250 static void Multiply(const TFltVV& A, const TFltVV& B, int ColId, TFltV& y); 00251 // C(:, ColIdC) := A * B(:, ColIdB) 00252 static void Multiply(const TFltVV& A, const TFltVV& B, int ColIdB, TFltVV& C, int ColIdC); 00253 00254 // y := A' * x 00255 static void MultiplyT(const TFltVV& A, const TFltV& x, TFltV& y); 00256 00257 // C = A * B 00258 static void Multiply(const TFltVV& A, const TFltVV& B, TFltVV& C); 00259 00260 // D = alpha * A(') * B(') + beta * C(') 00261 typedef enum { GEMM_NO_T = 0, GEMM_A_T = 1, GEMM_B_T = 2, GEMM_C_T = 4 } TLinAlgGemmTranspose; 00262 static void Gemm(const double& Alpha, const TFltVV& A, const TFltVV& B, const double& Beta, 00263 const TFltVV& C, TFltVV& D, const int& TransposeFlags); 00264 00265 // B = A^(-1) 00266 typedef enum { DECOMP_SVD } TLinAlgInverseType; 00267 static void Inverse(const TFltVV& A, TFltVV& B, const TLinAlgInverseType& DecompType); 00268 // subtypes of finding an inverse 00269 static void InverseSVD(const TFltVV& A, TFltVV& B); 00270 00271 // transpose matrix - B = A' 00272 static void Transpose(const TFltVV& A, TFltVV& B); 00273 00274 // performes Gram-Schmidt ortogonalization on elements of Q 00275 static void GS(TVec<TFltV>& Q); 00276 // Gram-Schmidt on columns of matrix Q 00277 static void GS(TFltVV& Q); 00278 00279 // rotates vector (OldX,OldY) for angle Angle (in radians!) 00280 static void Rotate(const double& OldX, const double& OldY, const double& Angle, double& NewX, double& NewY); 00281 00282 // checks if set of vectors is ortogonal 00283 static void AssertOrtogonality(const TVec<TFltV>& Vecs, const double& Threshold); 00284 static void AssertOrtogonality(const TFltVV& Vecs, const double& Threshold); 00285 }; 00286 00288 // Numerical-Recepies-Exception 00289 class TNSException { 00290 public: 00291 TStr Message; 00292 public: 00293 TNSException(const TStr& Msg): Message(Msg) {} 00294 }; 00295 00297 // Numerical-Linear-Algebra (copied from Numerical Recepies) 00298 class TNumericalStuff { 00299 private: 00300 static double sqr(double a); 00301 static double sign(double a, double b); 00302 00303 // Computes (a^2 + b^2)^(1/2) without 00304 // destructive underflow or overflow. 00305 static double pythag(double a, double b); 00306 00307 //displays error message to screen 00308 static void nrerror(const TStr& error_text); 00309 00310 public: 00311 // Householder reduction of a real, symmetric matrix a[1..n][1..n]. 00312 // On output, a is replaced by the orthogonal matrix Q eecting the 00313 // transformation. d[1..n] returns the diagonal elements of the 00314 // tridiagonal matrix, and e[1..n] the o-diagonal elements, with 00315 // e[1]=0. Several statements, as noted in comments, can be omitted 00316 // if only eigenvalues are to be found, in which case a contains no 00317 // useful information on output. Otherwise they are to be included. 00318 static void SymetricToTridiag(TFltVV& a, int n, TFltV& d, TFltV& e); 00319 00320 // QL algorithm with implicit shifts, to determine the eigenvalues 00321 // and eigenvectors of a real, symmetric, tridiagonal matrix, or of 00322 // a real, symmetric matrix previously reduced by tred2 x11.2. On 00323 // input, d[1..n] contains the diagonal elements of the tridiagonal 00324 // matrix. On output, it returns the eigenvalues. The vector e[1..n] 00325 // inputs the subdiagonal elements of the tridiagonal matrix, with 00326 // e[1] arbitrary. On output e is destroyed. When finding only the 00327 // eigenvalues, several lines may be omitted, as noted in the comments. 00328 // If the eigenvectors of a tridiagonal matrix are desired, the matrix 00329 // z[1..n][1..n] is input as the identity matrix. If the eigenvectors 00330 // of a matrix that has been reduced by tred2 are required, then z is 00331 // input as the matrix output by tred2. In either case, the kth column 00332 // of z returns the normalized eigenvector corresponding to d[k]. 00333 static void EigSymmetricTridiag(TFltV& d, TFltV& e, int n, TFltVV& z); 00334 00335 // Given a positive-dedinite symmetric matrix A(n,n), this routine 00336 // constructs its Cholesky decomposition, A = L * L^T . On input, only 00337 // the upper triangle of A need be given; it is not modified. The 00338 // Cholesky factor L is returned in the lower triangle of A, except for 00339 // its diagonal elements which are returned in p(n). 00340 static void CholeskyDecomposition(TFltVV& A, TFltV& p); 00341 00342 // Solves the set of n linear equations A * x = b, where A is a 00343 // positive-definite symmetric matrix. A(n,n) and p[1..n] are input 00344 // as the output of the routine choldc. Only the lower triangle of A 00345 // is accessed. b(n) is input as the right-hand side vector. The 00346 // solution vector is returned in x(n). A and p are not modified and 00347 // can be left in place for successive calls with diferent right-hand 00348 // sides b. b is not modified unless you identify b and x in the calling 00349 // sequence, which is allowed. 00350 static void CholeskySolve(const TFltVV& A, const TFltV& p, const TFltV& b, TFltV& x); 00351 00352 // Solves system of linear equations A * x = b, where A is symetric 00353 // positive-definite matrix. A is first decomposed using 00354 // CholeskyDecomposition and after solved using CholeskySolve. Only 00355 // upper triangle of A need be given and it is not modified. However, 00356 // lower triangle is modified! 00357 static void SolveSymetricSystem(TFltVV& A, const TFltV& b, TFltV& x); 00358 00359 // solve system A x_i = e_i for i = 1..n, where A and p are output 00360 // from CholeskyDecomposition. Result is stored to upper triangule 00361 // (possible since inverse of symetric matrix is also symetric! Sigh...) 00362 static void InverseSubstitute(TFltVV& A, const TFltV& p); 00363 00364 // Calculates inverse of symetric positiv definit matrix 00365 // Matrix is given as upper triangule of A, result is stored 00366 // in upper triangule of A. Lower triangule is random (actually 00367 // it has part of Choleksy decompositon of A) 00368 static void InverseSymetric(TFltVV& A); 00369 00370 // calcualtes inverse of upper triagonal matrix A 00371 // lower triangle is messed up... 00372 static void InverseTriagonal(TFltVV& A); 00373 00374 // Given a matrix a[1..n][1..n], this routine replaces it by the LU 00375 // decomposition of a rowwise permutation of itself. a and n are input. 00376 // a is output, arranged as in equation (2.3.14) above; indx[1..n] is 00377 // an output vector that records the row permutation efected by the partial 00378 // pivoting; d is output as +-1 depending on whether the number of row 00379 // interchanges was even or odd, respectively. This routine is used in 00380 // combination with lubksb to solve linear equations or invert a matrix. 00381 static void LUDecomposition(TFltVV& A, TIntV& indx, double& d); 00382 00383 // Solves the set of n linear equations A*X = B. Here a[1..n][1..n] is input, 00384 // not as the matrix A but rather as its LU decomposition, determined by the 00385 // routine ludcmp. indx[1..n] is input as the permutation vector returned by 00386 // ludcmp. b[1..n] is input as the right-hand side vector B, and returns with 00387 // the solution vector X. a, n, and indx are not modified by this routine and 00388 // can be left in place for successive calls with diferent right-hand sides b. 00389 // This routine takes into account the possibility that b will begin with many 00390 // zero elements, so it is efficient for use in matrix inversion. 00391 static void LUSolve(const TFltVV& A, const TIntV& indx, TFltV& b); 00392 00393 // Solves system of linear equations A * x = b. A is first decomposed using 00394 // LUDecomposition and after solved using LUSolve. A is modified! 00395 static void SolveLinearSystem(TFltVV& A, const TFltV& b, TFltV& x); 00396 }; 00397 00399 // Sparse-SVD 00400 // Calculates singular-value-decompositon for sparse matrixes. 00401 // If A is a matrix than A is decomposed to A = U S V' 00402 // where S is diagonal with singular values on diagonal and U 00403 // and V are ortogonal (U'*U = V'*V = I). 00404 typedef enum { ssotNoOrto, ssotSelective, ssotFull } TSpSVDReOrtoType; 00405 class TSparseSVD { 00406 private: 00407 // Result = Matrix' * Matrix * Vec(:,ColId) 00408 static void MultiplyATA(const TMatrix& Matrix, 00409 const TFltVV& Vec, int ColId, TFltV& Result); 00410 // Result = Matrix' * Matrix * Vec 00411 static void MultiplyATA(const TMatrix& Matrix, 00412 const TFltV& Vec, TFltV& Result); 00413 public: 00414 // calculates NumEig eigen values of symetric matrix 00415 // if SvdMatrixProductP than matrix Matrix'*Matrix is used 00416 static void SimpleLanczos(const TMatrix& Matrix, 00417 const int& NumEig, TFltV& EigValV, 00418 const bool& DoLocalReortoP = false, 00419 const bool& SvdMatrixProductP = false); 00420 // fast, calculates NumEig largers eigen values and vectors 00421 // kk should be something like 4*NumEig 00422 // if SvdMatrixProductP than matrix Matrix'*Matrix is used 00423 static void Lanczos(const TMatrix& Matrix, 00424 int NumEig, int Iters, const TSpSVDReOrtoType& ReOrtoType, 00425 TFltV& EigValV, TFltVV& EigVecVV, 00426 const bool& SvdMatrixProductP = false); 00427 static void Lanczos2(const TMatrix& Matrix, 00428 int MaxNumEig, int MaxSecs, const TSpSVDReOrtoType& ReOrtoType, 00429 TFltV& EigValV, TFltVV& EigVecVV, 00430 const bool& SvdMatrixProductP = false); 00431 00432 // calculates only singular values (based on SimpleLanczos) 00433 static void SimpleLanczosSVD(const TMatrix& Matrix, 00434 const int& CalcSV, TFltV& SngValV, 00435 const bool& DoLocalReortoP = false); 00436 // fast, calculates NumSV largers SV (based on Lanczos) 00437 static void LanczosSVD(const TMatrix& Matrix, 00438 int NumSV, int Iters, const TSpSVDReOrtoType& ReOrtoType, 00439 TFltV& SgnValV, TFltVV& LeftSgnVecVV, TFltVV& RightSgnVecVV); 00440 00441 // slow - ortogonal iteration 00442 static void OrtoIterSVD(const TMatrix& Matrix, 00443 int NumSV, int IterN, TFltV& SgnValV); 00444 00445 // projects sparse vector to space spanned by columns of matrix U 00446 static void Project(const TIntFltKdV& Vec, const TFltVV& U, TFltV& ProjVec); 00447 }; 00448 00450 // Sigmoid -- made by Janez(TM) 00451 // (y = 1/[1 + exp[-Ax+B]]) 00452 class TSigmoid { 00453 private: 00454 TFlt A; 00455 TFlt B; 00456 private: 00457 // Evaluates how well the sigmoid function fits the data. 00458 // J(A, B) = - ln prod_i P(Y = y_i | Z = z_i). The 'data' parameter 00459 // should contain (z_i, y_i) pairs. Smaller J means a better fit. 00460 static double EvaluateFit(const TFltIntKdV& data, const double A, const double B); 00461 // Computes not only J but also its partial derivatives. 00462 static void EvaluateFit(const TFltIntKdV& data, const double A, 00463 const double B, double& J, double& JA, double& JB); 00464 // Let J(lambda) = J(A + lambda U, B + lambda V). 00465 // This function computes J and its first and second derivatives. 00466 // They can be used to choose a good lambda (using Newton's method) 00467 // when minimizing J. -- This method has not been tested yet. 00468 static void EvaluateFit(const TFltIntKdV& data, const double A, 00469 const double B, const double U, const double V, const double lambda, 00470 double& J, double& JJ, double& JJJ); 00471 public: 00472 TSigmoid() { }; 00473 TSigmoid(const double& A_, const double& B_): A(A_), B(B_) { }; 00474 // Tries to find a pair (A, B) that minimizes J(A, B). 00475 // Uses gradient descent. 00476 TSigmoid(const TFltIntKdV& data); 00477 00478 TSigmoid(TSIn& SIn) { A.Load(SIn); B.Load(SIn); } 00479 void Load(TSIn& SIn) { A.Load(SIn); B.Load(SIn); } 00480 void Save(TSOut& SOut) const {A.Save(SOut); B.Save(SOut);} 00481 00482 double GetVal(const double& x) const { 00483 return 1.0 / (1.0 + exp(-A * x + B)); } 00484 double operator()(const double& x) const { 00485 return GetVal(x); } 00486 00487 void GetSigmoidAB(double& A_, double& B_) { A_=A; B_=B; } 00488 }; 00489 00491 // Useful stuff (hopefuly) 00492 class TLAMisc { 00493 public: 00494 // Dumps vector to file so Excel can read it 00495 static void SaveCsvTFltV(const TFltV& Vec, TSOut& SOut); 00496 // Dumps sparse vector to file so Matlab can read it 00497 static void SaveMatlabTFltIntKdV(const TIntFltKdV& SpV, const int& ColN, TSOut& SOut); 00498 // Dumps vector to file so Matlab can read it 00499 static void SaveMatlabTFltV(const TFltV& m, const TStr& FName); 00500 // Dumps vector to file so Matlab can read it 00501 static void SaveMatlabTIntV(const TIntV& m, const TStr& FName); 00502 // Dumps column ColId from m to file so Matlab can read it 00503 static void SaveMatlabTFltVVCol(const TFltVV& m, int ColId, const TStr& FName); 00504 // Dumps matrix to file so Matlab can read it 00505 static void SaveMatlabTFltVV(const TFltVV& m, const TStr& FName); 00506 // Dumps main minor rowN x colN to file so Matlab can read it 00507 static void SaveMatlabTFltVVMjrSubMtrx(const TFltVV& m, int rowN, int colN, const TStr& FName); 00508 // loads matlab full matrix 00509 static void LoadMatlabTFltVV(const TStr& FNm, TVec<TFltV>& ColV); 00510 // loads matlab full matrix 00511 static void LoadMatlabTFltVV(const TStr& FNm, TFltVV& MatrixVV); 00512 // prints vector to screen 00513 static void PrintTFltV(const TFltV& Vec, const TStr& VecNm); 00514 // print matrixt to screen 00515 static void PrintTFltVV(const TFltVV& A, const TStr& MatrixNm); 00516 // prints vector to screen 00517 static void PrintTIntV(const TIntV& Vec, const TStr& VecNm); 00518 // fills vector with random numbers 00519 static void FillRnd(TFltV& Vec) { TRnd Rnd(0); FillRnd(Vec, Rnd); } 00520 static void FillRnd(TFltV& Vec, TRnd& Rnd); 00521 // set all components 00522 static void Fill(TFltVV& M, const double& Val); 00523 // sets all compnents to zero 00524 static void FillZero(TFltV& Vec) { Vec.PutAll(0.0); } 00525 static void FillZero(TFltVV& M) { Fill(M, 0.0); } 00526 // set matrix to identity 00527 static void FillIdentity(TFltVV& M); 00528 static void FillIdentity(TFltVV& M, const double& Elt); 00529 // sums elements in vector 00530 static int SumVec(const TIntV& Vec); 00531 static double SumVec(const TFltV& Vec); 00532 // converts full vector to sparse 00533 static void ToSpVec(const TFltV& Vec, TIntFltKdV& SpVec, 00534 const double& CutWordWgtSumPrc = 0.0); 00535 // converts sparse vector to full 00536 static void ToVec(const TIntFltKdV& SpVec, TFltV& Vec, const int& VecLen); 00537 }; 00538 00540 // Template-ised Sparse Operations 00541 template <class TKey, class TDat> 00542 class TSparseOps { 00543 private: 00544 typedef TVec<TKeyDat<TKey, TDat> > TKeyDatV; 00545 public: 00546 static void SparseMerge(const TKeyDatV& SrcV1, const TKeyDatV& SrcV2, TKeyDatV& DstV) { 00547 DstV.Clr(); 00548 const int Src1Len = SrcV1.Len(); 00549 const int Src2Len = SrcV2.Len(); 00550 int Src1N = 0, Src2N = 0; 00551 while (Src1N < Src1Len && Src2N < Src2Len) { 00552 if (SrcV1[Src1N].Key < SrcV2[Src2N].Key) { 00553 DstV.Add(SrcV1[Src1N]); Src1N++; 00554 } else if (SrcV1[Src1N].Key > SrcV2[Src2N].Key) { 00555 DstV.Add(SrcV2[Src2N]); Src2N++; 00556 } else { 00557 DstV.Add(TKeyDat<TKey, TDat>(SrcV1[Src1N].Key, SrcV1[Src1N].Dat + SrcV2[Src2N].Dat)); 00558 Src1N++; Src2N++; 00559 } 00560 } 00561 while (Src1N < Src1Len) { DstV.Add(SrcV1[Src1N]); Src1N++; } 00562 while (Src2N < Src2Len) { DstV.Add(SrcV2[Src2N]); Src2N++; } 00563 } 00564 }; 00565 00566 typedef TSparseOps<TInt, TFlt> TSparseOpsIntFlt;