SNAP Library , User Reference
2013-01-07 14:03:36
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
#include <linalg.h>
Static Public Member Functions | |
static void | SymetricToTridiag (TFltVV &a, int n, TFltV &d, TFltV &e) |
static void | EigSymmetricTridiag (TFltV &d, TFltV &e, int n, TFltVV &z) |
static void | CholeskyDecomposition (TFltVV &A, TFltV &p) |
static void | CholeskySolve (const TFltVV &A, const TFltV &p, const TFltV &b, TFltV &x) |
static void | SolveSymetricSystem (TFltVV &A, const TFltV &b, TFltV &x) |
static void | InverseSubstitute (TFltVV &A, const TFltV &p) |
static void | InverseSymetric (TFltVV &A) |
static void | InverseTriagonal (TFltVV &A) |
static void | LUDecomposition (TFltVV &A, TIntV &indx, double &d) |
static void | LUSolve (const TFltVV &A, const TIntV &indx, TFltV &b) |
static void | SolveLinearSystem (TFltVV &A, const TFltV &b, TFltV &x) |
Static Private Member Functions | |
static double | sqr (double a) |
static double | sign (double a, double b) |
static double | pythag (double a, double b) |
static void | nrerror (const TStr &error_text) |
void TNumericalStuff::CholeskyDecomposition | ( | TFltVV & | A, |
TFltV & | p | ||
) | [static] |
Definition at line 786 of file linalg.cpp.
{ Assert(A.GetRows() == A.GetCols()); int n = A.GetRows(); p.Reserve(n,n); int i,j,k; double sum; for (i=1;i<=n;i++) { for (j=i;j<=n;j++) { for (sum=A(i-1,j-1),k=i-1;k>=1;k--) sum -= A(i-1,k-1)*A(j-1,k-1); if (i == j) { if (sum <= 0.0) nrerror("choldc failed"); p[i-1]=sqrt(sum); } else A(j-1,i-1)=sum/p[i-1]; } } }
void TNumericalStuff::CholeskySolve | ( | const TFltVV & | A, |
const TFltV & | p, | ||
const TFltV & | b, | ||
TFltV & | x | ||
) | [static] |
Definition at line 804 of file linalg.cpp.
{ IAssert(A.GetRows() == A.GetCols()); int n = A.GetRows(); x.Reserve(n,n); int i,k; double sum; // Solve L * y = b, storing y in x for (i=1;i<=n;i++) { for (sum=b[i-1],k=i-1;k>=1;k--) sum -= A(i-1,k-1)*x[k-1]; x[i-1]=sum/p[i-1]; } // Solve L^T * x = y for (i=n;i>=1;i--) { for (sum=x[i-1],k=i+1;k<=n;k++) sum -= A(k-1,i-1)*x[k-1]; x[i-1]=sum/p[i-1]; } }
void TNumericalStuff::EigSymmetricTridiag | ( | TFltV & | d, |
TFltV & | e, | ||
int | n, | ||
TFltVV & | z | ||
) | [static] |
Definition at line 729 of file linalg.cpp.
{ int m,l,iter,i,k; // N = n+1; double s,r,p,g,f,dd,c,b; // Convenient to renumber the elements of e for (i=2;i<=n;i++) e[i-1]=e[i]; e[n]=0.0; for (l=1;l<=n;l++) { iter=0; do { // Look for a single small subdiagonal element to split the matrix. for (m=l;m<=n-1;m++) { dd=TFlt::Abs(d[m])+TFlt::Abs(d[m+1]); if ((double)(TFlt::Abs(e[m])+dd) == dd) break; } if (m != l) { if (iter++ == 60) nrerror("Too many iterations in EigSymmetricTridiag"); //Form shift. g=(d[l+1]-d[l])/(2.0*e[l]); r=pythag(g,1.0); //This is dm - ks. g=d[m]-d[l]+e[l]/(g+sign(r,g)); s=c=1.0; p=0.0; // A plane rotation as in the original QL, followed by // Givens rotations to restore tridiagonal form for (i=m-1;i>=l;i--) { f=s*e[i]; b=c*e[i]; e[i+1]=(r=pythag(f,g)); // Recover from underflow. if (r == 0.0) { d[i+1] -= p; e[m]=0.0; break; } s=f/r; c=g/r; g=d[i+1]-p; r=(d[i]-g)*s+2.0*c*b; d[i+1]=g+(p=s*r); g=c*r-b; // Next loop can be omitted if eigenvectors not wanted for (k=0;k<n;k++) { f=z(k,i); z(k,i)=s*z(k,i-1)+c*f; z(k,i-1)=c*z(k,i-1)-s*f; } } if (r == 0.0 && i >= l) continue; d[l] -= p; e[l]=g; e[m]=0.0; } } while (m != l); } }
void TNumericalStuff::InverseSubstitute | ( | TFltVV & | A, |
const TFltV & | p | ||
) | [static] |
Definition at line 832 of file linalg.cpp.
{ IAssert(A.GetRows() == A.GetCols()); int n = A.GetRows(); TFltV x(n); int i, j, k; double sum; for (i = 0; i < n; i++) { // solve L * y = e_i, store in x // elements from 0 to i-1 are 0.0 for (j = 0; j < i; j++) x[j] = 0.0; // solve l_ii * y_i = 1 => y_i = 1/l_ii x[i] = 1/p[i]; // solve y_j for j > i for (j = i+1; j < n; j++) { for (sum = 0.0, k = i; k < j; k++) sum -= A(j,k) * x[k]; x[j] = sum / p[j]; } // solve L'* x = y, store in upper triangule of A for (j = n-1; j >= i; j--) { for (sum = x[j], k = j+1; k < n; k++) sum -= A(k,j)*x[k]; x[j] = sum/p[j]; } for (int j = i; j < n; j++) A(i,j) = x[j]; } }
void TNumericalStuff::InverseSymetric | ( | TFltVV & | A | ) | [static] |
Definition at line 861 of file linalg.cpp.
{ IAssert(A.GetRows() == A.GetCols()); TFltV p; // first we calculate cholesky decomposition of A CholeskyDecomposition(A, p); // than we solve system A x_i = e_i for i = 1..n InverseSubstitute(A, p); }
void TNumericalStuff::InverseTriagonal | ( | TFltVV & | A | ) | [static] |
Definition at line 870 of file linalg.cpp.
{ IAssert(A.GetRows() == A.GetCols()); int n = A.GetRows(); TFltV x(n), p(n); int i, j, k; double sum; // copy upper triangle to lower one as we'll overwrite upper one for (i = 0; i < n; i++) { p[i] = A(i,i); for (j = i+1; j < n; j++) A(j,i) = A(i,j); } // solve for (i = 0; i < n; i++) { // solve R * x = e_i, store in x // elements from 0 to i-1 are 0.0 for (j = n-1; j > i; j--) x[j] = 0.0; // solve l_ii * y_i = 1 => y_i = 1/l_ii x[i] = 1/p[i]; // solve y_j for j > i for (j = i-1; j >= 0; j--) { for (sum = 0.0, k = i; k > j; k--) sum -= A(k,j) * x[k]; x[j] = sum / p[j]; } for (int j = 0; j <= i; j++) A(j,i) = x[j]; } }
void TNumericalStuff::LUDecomposition | ( | TFltVV & | A, |
TIntV & | indx, | ||
double & | d | ||
) | [static] |
Definition at line 898 of file linalg.cpp.
{ Assert(A.GetRows() == A.GetCols()); int n = A.GetRows(); indx.Reserve(n,n); int i=0,imax=0,j=0,k=0; double big,dum,sum,temp; TFltV vv(n); // vv stores the implicit scaling of each row. d=1.0; // No row interchanges yet. // Loop over rows to get the implicit scaling information. for (i=1;i<=n;i++) { big=0.0; for (j=1;j<=n;j++) if ((temp=TFlt::Abs(A(i-1,j-1))) > big) big=temp; if (big == 0.0) nrerror("Singular matrix in routine LUDecomposition"); vv[i-1]=1.0/big; } for (j=1;j<=n;j++) { for (i=1;i<j;i++) { sum=A(i-1,j-1); for (k=1;k<i;k++) sum -= A(i-1,k-1)*A(k-1,j-1); A(i-1,j-1)=sum; } big=0.0; //Initialize for the search for largest pivot element. for (i=j;i<=n;i++) { sum=A(i-1,j-1); for (k=1;k<j;k++) sum -= A(i-1,k-1)*A(k-1,j-1); A(i-1,j-1)=sum; //Is the figure of merit for the pivot better than the best so far? if ((dum=vv[i-1] * TFlt::Abs(sum)) >= big) { big=dum; imax=i; } } //Do we need to interchange rows? if (j != imax) { //Yes, do so... for (k=1;k<=n;k++) { dum=A(imax-1,k-1); A(imax-1,k-1)=A(j-1,k-1); // Tadej: imax-1,k looks wrong A(j-1,k-1)=dum; } //...and change the parity of d. d = -d; vv[imax-1]=vv[j-1]; //Also interchange the scale factor. } indx[j-1]=imax; //If the pivot element is zero the matrix is singular (at least to the precision of the //algorithm). For some applications on singular matrices, it is desirable to substitute //TINY for zero. if (A(j-1,j-1) == 0.0) A(j-1,j-1)=1e-20; //Now, finally, divide by the pivot element. if (j != n) { dum=1.0/(A(j-1,j-1)); for (i=j+1;i<=n;i++) A(i-1,j-1) *= dum; } } //Go back for the next column in the reduction. }
void TNumericalStuff::LUSolve | ( | const TFltVV & | A, |
const TIntV & | indx, | ||
TFltV & | b | ||
) | [static] |
Definition at line 963 of file linalg.cpp.
{ Assert(A.GetRows() == A.GetCols()); int n = A.GetRows(); int i,ii=0,ip,j; double sum; for (i=1;i<=n;i++) { ip=indx[i-1]; sum=b[ip-1]; b[ip-1]=b[i-1]; if (ii) for (j=ii;j<=i-1;j++) sum -= A(i-1,j-1)*b[j-1]; else if (sum) ii=i;b[i-1]=sum; } for (i=n;i>=1;i--) { sum=b[i-1]; for (j=i+1;j<=n;j++) sum -= A(i-1,j-1)*b[j-1]; b[i-1]=sum/A(i-1,i-1); } }
void TNumericalStuff::nrerror | ( | const TStr & | error_text | ) | [static, private] |
Definition at line 644 of file linalg.cpp.
{ printf("NR_ERROR: %s", error_text.CStr()); throw new TNSException(error_text); }
double TNumericalStuff::pythag | ( | double | a, |
double | b | ||
) | [static, private] |
Definition at line 649 of file linalg.cpp.
double TNumericalStuff::sign | ( | double | a, |
double | b | ||
) | [static, private] |
Definition at line 640 of file linalg.cpp.
{
return b >= 0.0 ? fabs(a) : -fabs(a);
}
void TNumericalStuff::SolveLinearSystem | ( | TFltVV & | A, |
const TFltV & | b, | ||
TFltV & | x | ||
) | [static] |
Definition at line 983 of file linalg.cpp.
{ TIntV indx; double d; LUDecomposition(A, indx, d); x = b; LUSolve(A, indx, x); }
void TNumericalStuff::SolveSymetricSystem | ( | TFltVV & | A, |
const TFltV & | b, | ||
TFltV & | x | ||
) | [static] |
Definition at line 826 of file linalg.cpp.
{ IAssert(A.GetRows() == A.GetCols()); TFltV p; CholeskyDecomposition(A, p); CholeskySolve(A, p, b, x); }
double TNumericalStuff::sqr | ( | double | a | ) | [static, private] |
Definition at line 636 of file linalg.cpp.
{
return a == 0.0 ? 0.0 : a*a;
}
void TNumericalStuff::SymetricToTridiag | ( | TFltVV & | a, |
int | n, | ||
TFltV & | d, | ||
TFltV & | e | ||
) | [static] |
Definition at line 657 of file linalg.cpp.
{ int l,k,j,i; double scale,hh,h,g,f; for (i=n;i>=2;i--) { l=i-1; h=scale=0.0; if (l > 1) { for (k=1;k<=l;k++) scale += fabs(a(i-1,k-1).Val); if (scale == 0.0) //Skip transformation. e[i]=a(i-1,l-1); else { for (k=1;k<=l;k++) { a(i-1,k-1) /= scale; //Use scaled a's for transformation. h += a(i-1,k-1)*a(i-1,k-1); } f=a(i-1,l-1); g=(f >= 0.0 ? -sqrt(h) : sqrt(h)); IAssertR(_isnan(g) == 0, TFlt::GetStr(h)); e[i]=scale*g; h -= f*g; //Now h is equation (11.2.4). a(i-1,l-1)=f-g; //Store u in the ith row of a. f=0.0; for (j=1;j<=l;j++) { // Next statement can be omitted if eigenvectors not wanted a(j-1,i-1)=a(i-1,j-1)/h; //Store u=H in ith column of a. g=0.0; //Form an element of A u in g. for (k=1;k<=j;k++) g += a(j-1,k-1)*a(i-1,k-1); for (k=j+1;k<=l;k++) g += a(k-1,j-1)*a(i-1,k-1); e[j]=g/h; //Form element of p in temporarily unused element of e. f += e[j]*a(i-1,j-1); } hh=f/(h+h); //Form K, equation (11.2.11). for (j=1;j<=l;j++) { //Form q and store in e overwriting p. f=a(i-1,j-1); e[j]=g=e[j]-hh*f; for (k=1;k<=j;k++) { //Reduce a, equation (11.2.13). a(j-1,k-1) -= (f*e[k]+g*a(i-1,k-1)); Assert(_isnan(a(j-1,k-1)) == 0); } } } } else e[i]=a(i-1,l-1); d[i]=h; } // Next statement can be omitted if eigenvectors not wanted d[1]=0.0; e[1]=0.0; // Contents of this loop can be omitted if eigenvectors not // wanted except for statement d[i]=a[i][i]; for (i=1;i<=n;i++) { //Begin accumulation of transformationmatrices. l=i-1; if (d[i]) { //This block skipped when i=1. for (j=1;j<=l;j++) { g=0.0; for (k=1;k<=l;k++) //Use u and u=H stored in a to form PQ. g += a(i-1,k-1)*a(k-1,j-1); for (k=1;k<=l;k++) { a(k-1,j-1) -= g*a(k-1,i-1); Assert(_isnan(a(k-1,j-1)) == 0); } } } d[i]=a(i-1,i-1); //This statement remains. a(i-1,i-1)=1.0; //Reset row and column of a to identity matrix for next iteration. for (j=1;j<=l;j++) a(j-1,i-1)=a(i-1,j-1)=0.0; } }